
A basic understanding of PowerPC
assembly language will enable you to

read the PowerPC output produced by
compilers on machines like the older Power

Macintosh or for game consoles such as the Sony
PlayStation or the Xbox. Thus, this appendix provides
an overview of the following topics:

•	 The PowerPC machine architecture

•	 PowerPC assembly language

•	 The memory addressing modes of the PowerPC CPU

•	 The syntax used by the PowerPC Gas assembler

•	 How to use constants and declare data in assembly language programs

In addition, the resources at www.writegreatcode.com describe a minimal
PowerPC instruction set that you’ll need to examine compiler output.

B
P O W E R P C A S S E M B LY F O R T H E

H L L P R O G R A M M E R

2 Appendix B

B.1  Assembly Syntaxes
As Chapter 3 explained, there are significant syntax differences in the code
generated by various assemblers for the 80x86. PowerPC assemblers, by con-
trast, use a much more uniform syntax, so you should have no trouble read-
ing PowerPC assembly listings produced for other assemblers (such as the
Code Warrior assembler) if you learn the GNU Gas syntax used in this book.

B.2  Basic PowerPC Architecture
The IBM/Motorola PowerPC CPU family is classified as a Von Neumann
machine. Von Neumann computer systems contain three main building
blocks: the central processing unit (CPU), memory, and input/output (I/O)
devices. These three components are connected together via the system bus
(consisting of the address, data, and control buses). Figure 3-1 showed this
relationship.

The CPU communicates with memory and I/O devices by placing a
numeric value on the address bus to select one of the memory locations
or I/O device port locations, each of which has a unique binary numeric
address. Then the CPU, I/O, and memory devices pass data among them-
selves by placing the data on the data bus. The control bus provides signals
that determine the direction of the data transfer (to/from memory and to/
from an I/O device).

The registers are the most prominent feature within the CPU. The
PowerPC CPU registers are categorized as general-purpose integer reg-
isters, floating-point registers, special-purpose application-accessible
registers, and special-purpose kernel-mode registers. Special-purpose
kernel-mode registers are intended for writing operating systems, debug-
gers, and other system-level tools. That topic is well beyond the scope of this
book, so they will not be discussed further.

B.2.1  General-Purpose Integer Registers
The PowerPC CPUs provide 32 general-purpose integer registers for appli-
cation use. Most compilers refer to these registers as R0 through R31. On
older PowerPC processors (circa 2020), these registers are 32 bits wide. On
higher-end PowerPC processors, they are 64 bits wide.

B.2.2  General-Purpose Floating-Point Registers
The PowerPC processors also provide 32 64-bit floating-point registers.
Assemblers and compilers generally refer to these registers as F0 through
F31 (or FPR0 through FPR31). These registers can hold single- or double-
precision floating-point values.

PowerPC Assembly for the HLL Programmer 3

B.2.3  User-Mode-Accessible Special-Purpose Registers
The user-mode-accessible special-purpose registers include the condition
code register(s), the floating-point status and control register, the XER
register, the LINK register (LR), the COUNT register (CTR), and the time
base registers (TBRs).

B.2.3.1  Condition Code Registers

The condition code register is 32 bits wide, but it is actually a collection
of eight 4-bit registers (CR0 through CR7) that hold the status of a previ-
ous computation (such as the result of a comparison). The PowerPC uses
CR0 to hold the condition codes after an integer operation, and CR1 to
hold the condition codes after a floating-point operation. Programs typi-
cally use the remaining condition code registers to save the status of some
operation while other operations take place.

The individual bits in the CR0 condition code register are as follows:

The LT bit (CR0: bit 0)  Set if an operation produces a negative result.
Also indicates a “less than” condition.

The GT bit (CR0: bit 1)  Set if the result is positive (and nonzero)
after an operation. Also indicates a “greater than” condition.

The zero bit (CR0: bit 2)  This bit is set when the result of an opera-
tion is 0. This also indicates the “equality” condition.

The summary overflow bit (CR0: bit 3)  This indicates a signed
integer overflow during a chain of operations (see the XER register
description in Section B.2.3.3).

The individual bits in the CR1 condition code register hold the follow-
ing values:

•	 Floating-point exception bit (CR1: bit 0)

•	 Floating-point enable exception bit (CR1: bit 1)

•	 Floating-point invalid exception bit (CR1: bit 2)

•	 Floating-point overflow exception bit (CR1: bit 3)

Table B-1 describes how the PowerPC sets the CRn bits after a compari-
son instruction.

Table B-1: CRn Field Bit Settings for Comparisons

CRn bit Meaning Description

0 Less than (integer or
floating-point)

For integer registers, this bit is set if one register is
less than another (or a small immediate constant).
Unsigned and signed comparisons are possible using
different instructions.
For floating-point registers, this bit is set if the value
in one floating-point register is less than the value in
another after a floating-point comparison (which is
always a signed comparison).

(continued)

4 Appendix B

Table B-1: CRn Field Bit Settings for Comparisons (continued)

CRn bit Meaning Description

1 Greater than (integer
or floating-point)

For integer registers, this bit is set if one register
is greater than another (or a small immediate
constant). Unsigned and signed comparisons are
possible using different instructions.
For floating-point registers, this bit is set if the value
in one floating-point register is greater than the value
in another after a floating-point comparison (which is
always a signed comparison).

2 Equal (integer or
floating-point)

For integer registers, this bit is set if one register is
equal to another (or a small immediate constant).
Unsigned and signed comparisons are the same
when comparing for equality.
For floating-point registers, this bit is set if the value
in one floating-point register is equal to the value in
another after a floating-point comparison.

3 Summary overflow
(integer)
Not A Number, NaN
(floating-point)

After an integer operation, this bit indicates whether
an overflow has occurred. This bit is sticky insofar as
you can only clear it, once set, by explicitly clearing
the SO bit in the XER register.
After a floating-point operation, this bit indicates
whether one of the two floating-point operands
is NaN.

B.2.3.2  Floating-Point Status and Control Register

The floating-point status and control register is a 32-bit register contain-
ing 24 status bits and 8 control bits. The status bits appear in bit positions
0 through 23, and the control bits in bit positions 24 through 31. The
PowerPC CPU updates the status bits at the completion of each floating-
point instruction; the program is responsible for initializing and manipulat-
ing the control bits.

Most of the status bits in the floating-point status and control register
are sticky—that is, once a bit is set, it remains set until explicitly cleared
by software. This allows the CPU to execute a sequence of floating-point
operations and then test for an invalid result, rather than having to test
after each instruction. This reduces the number of tests an application
must do and, therefore, reduces the size and increases the performance
of the application.

The exact nature of the floating-point status bits is not important here
(the PowerPC code in this book rarely checks the floating-point status), so
we’ll skip a complete discussion of it. For more details, consult the PowerPC
documentation available from IBM (www.ibm.com).

B.2.3.3  XER Register

The PowerPC XER register collects several disparate values that don’t have
a home elsewhere. The low-order (LO) 3 bits maintain the summary over-
flow (bit 0), overflow (bit 1), and carry (bit 2) conditions. The high-order
(HO) 8 bits contain a byte count for some PowerPC string operations.

PowerPC Assembly for the HLL Programmer 5

The overflow and summary overflow bits are set by instructions that
produce a signed integer result that cannot be represented in 32 or 64 bits
(depending on the instruction). The summary overflow bit is sticky. The over-
flow bit, on the other hand, simply reflects the status (overflow/no overflow)
of the last arithmetic operation; in particular, if an arithmetic operation does
not produce an overflow, then that operation clears the overflow bit.

The carry flag is set whenever an arithmetic instruction produces an
unsigned integer result that cannot be held in 32 or 64 bits (depending on
the instruction); this bit also holds the bits shifted out of a register operand
in a shift left or right operation.

B.2.3.4  The LINK Register

The PowerPC LINK register holds a return address after the execution of a
branch and link (bl) instruction. That is, executing bl leaves the address of
the instruction following the branch in the LINK register. PowerPC applica-
tions use this register to implement returns from subroutine operations as
well as to compute program-counter relative addresses for various opera-
tions. The PowerPC can also use the LINK register for indirect jumps (such
as for implementing switch statements).

B.2.3.5  The COUNT Register

The COUNT register (also called CTR) has two purposes: it’s used as a
loop control register and to hold the target address for an indirect jump.
Most compilers use the COUNT register for the latter purpose, as shown
throughout the code in this book.

B.2.3.6  The Time Base Registers

The Time Base Lower (TBL) and Time Base Upper (TBU) registers are
read-only in user mode. Applications can use these two registers (which
actually concatenate to form a single 64-bit register) to compute the execu-
tion time of an instruction sequence. However, as few compilers consider
the values in these registers, this book doesn’t discuss them.

B.3  Literal Constants
Like most assemblers, Gas supports literal numeric, character, and string
constants. This section describes their syntax.

B.3.1  Binary Literal Constants
Binary literal constants in Gas begin with the special 0b prefix followed by
one or more binary digits (0 or 1). Examples:

0b1011
0b10101111
0b0011111100011001
0b1011001010010101

6 Appendix B

B.3.2  Decimal Literal Constants
Decimal literal constants in Gas take the standard form—a sequence of one
or more decimal digits without any special prefix or suffix. Examples:

123
1209345

B.3.3  Hexadecimal Literal Constants
Hexadecimal literal constants in Gas consist of a string of hexadecimal dig-
its (0..9, a..f, or A..F) with a 0x prefix. Examples:

0x1AB0
0x1234ABCD
0xdead

B.3.4  Character and String Literal Constants
Character literal constants in Gas consist of an apostrophe followed by a
single character. Examples:

'a
''
'!

String literal constants in Gas consist of a sequence of zero or more char-
acters surrounded by quotes. They use the same syntax as C strings. You use
the \ escape sequence to embed special characters in a Gas string. Examples:

"Hello World"
"" -- The empty string
"He said \"Hello\" to them"
"\"" -- string containing a single quote character

B.3.5  Floating-Point Literal Constants
Floating-point literal constants in assembly language typically take the same
form you’ll find in HLLs—a sequence of digits, possibly containing a deci-
mal point, optionally followed by a signed exponent. Examples:

3.14159
2.71e+2
1.0e-5
5e1

PowerPC Assembly for the HLL Programmer 7

B.4  Manifest (Symbolic) Constants in Assembly Language
Almost every assembler provides a mechanism for declaring symbolic
(named) constants. Gas uses the .equ (“equate”) statement to define a sym-
bolic constant in the source file. This statement uses the following syntax:

.equ symbolName, value

Here are some examples within a Gas source file:

.equ false, 0

.equ true, 1

.equ anIntConst, 12345

B.5  PowerPC Addressing Modes
PowerPC instructions can access three types of operands: register oper-
ands, immediate constants, and memory operands.

B.5.1  PowerPC Register Access
Gas allows assembly programmers and compiler writers to access the PowerPC
general-purpose integer registers by name or number: R0 through R31.

Floating-point instructions access the floating-point registers by their
name (F0 through F31). Note that floating-point registers are legal only as
floating-point instruction operands (just as integer registers are accessible
only within integer instructions).

B.5.2  The Immediate Addressing Mode
Many integer instructions allow a programmer to specify an immediate
constant as a source operand. However, as all PowerPC instructions are
exactly 32 bits in size, a single instruction cannot load a 32-bit (or larger)
constant into a PowerPC register. The PowerPC’s instruction set does sup-
port immediate constants that are 16 bits in size (or smaller). The PowerPC
encodes those constants into the opcode and sign-extends their values to
32 bits (or 64 bits) prior to using them.

For immediate values outside the range –32,768 through +32,767,
the PowerPC requires that you load the constant into a register using a
couple of instructions and then use the value in that register. The most
obvious downside to this is that the code is larger and slower, but another
problem is that you must dedicate a register to hold the immediate value.
Fortunately, the PowerPC has 32 general-purpose registers available, so
using a register for this purpose isn’t quite as costly as on a CPU with fewer
registers (like the 80x86).

8 Appendix B

B.5.3  PowerPC Memory Addressing Modes
The PowerPC CPU is a load/store architecture, meaning that it can only
access (data) memory using load and store instructions. All other instruc-
tions operate on registers (or small immediate constants). With a load/
store architecture, for example, you cannot directly add the contents
of some memory location to a register value—you must first load the
memory data into a register and then add that register to the destination
register’s value.

RISC CPUs generally eschew complex addressing modes, instead rely-
ing upon sequences of machine instructions using simple addressing modes
to achieve the same effect. The PowerPC, true to its RISC heritage, supports
only three memory addressing modes. One of those is a special address-
ing mode used only by the load string and store string instructions. So, for
all practical purposes, the PowerPC supports only two memory addressing
modes: register plus displacement and register plus register (base plus index).

B.5.3.1  Register Plus Displacement Addressing Mode

The PowerPC register plus displacement addressing mode adds a signed
16-bit displacement value, sign-extended to 32 bits, with the value from a
general-purpose integer register to compute the effective memory address.
The Gas syntax for this addressing mode is as follows:

displacementValue(Rn)

where displacementValue is a signed 16-bit expression and Rn represents one
of the PowerPC’s 32-bit general-purpose integer registers (R0 through
R31). R0 is a special case in this addressing mode, however. If you specify
R0, the PowerPC CPU substitutes 0 in place of the value in the R0 register.
This provides an absolute or displacement-only addressing mode that accesses
memory locations 0 through 32,767 (and also the final 32KB at the end of
the address space).

The lbz (load byte with zero extension) instruction is a typical load
instruction that uses the register plus displacement addressing mode. It
fetches a byte from memory, zero-extends it to 32 bits (64 bits on the 64-bit
variants of the PowerPC), and then copies the result into a destination reg-
ister. For example, this particular instruction loads the LO byte of R3 with
the byte found in memory at the address held in R5 plus 4. It zeros out the
HO bytes of R3:

lbz R3, 4(R5)

Most load and store instructions (like lbz) on the PowerPC support
a special update form. When you’re using the register plus displacement
addressing mode, these instructions work just like the standard load
instructions except that they update the base address register with the final
effective address. That is, they add the displacement to the base register’s

PowerPC Assembly for the HLL Programmer 9

value after loading the value from memory. The lbzu instruction is a good
example of this form:

lbzu R3, 4(R5)

This instruction not only copies the value from memory location [R5 + 4]1
into R3, but also adds 4 to R5. Note that you can’t specify R0 as a base reg-
ister when using the update form (remember, the PowerPC substitutes the 0
for R0, and you can’t store a value into a constant).

B.5.3.2  Register Plus Register (Indexed) Addressing Mode

The PowerPC also supports an indexed addressing mode that uses one
general-purpose register to hold a base address and a second general-
purpose register to hold an index from that base address. This addressing
mode is specified as part of the instruction mnemonic. For example, to use
the indexed addressing mode with the lbz instruction, you’d use the lbzx
mnemonic. Instructions using this addressing mode typically have three
operands: a destination operation (for loads) or a source operand (for
store operations), a base register (Rb), and an index register (Rx). The lbzx
instruction, for example, uses the following syntax:

lbzx Rd, Rb, Rx

 This example loads R3 with the zero-extended byte found at the mem-
ory address [R5 + R6]:

lbzx R3, R5, R6

There’s also an update form of the indexed addressing mode (such as
lbzux). This form updates the base register with the sum of the base and
index registers after computing the effective memory address. The index
register’s value is unaffected by the update form of the instruction.

B.6  Declaring Data in Assembly Language
The PowerPC CPU provides only a few low-level machine data types on
which individual machine instructions can operate:

•	 Bytes that hold arbitrary 8-bit values

•	 Words that hold arbitrary 16-bit values (halfwords in PowerPC
terminology)

•	 Double words that hold arbitrary 32-bit values (words in PowerPC
terminology)

1. The brackets ([]) denote indirection. That is, [R5 + 4] represents the memory at the
address specified by the contents of R5 plus 4.

10 Appendix B

•	 Quad words that hold 64-bit values (double words in PowerPC
terminology)

•	 Single-precision floating-point values (32-bit single floating-point values)

•	 Double-precision, 64-bit, floating-point values

N O T E 	 Although the standard PowerPC terminology is byte, halfword, word, and double
word for 8-, 16-, 32-, and 64-bit integer values, outside of this appendix this book
uses the x86 terminology to avoid confusion with the 80x86 code.

Gas uses the .byte directive in a .data section to declare a byte variable,
like so:

variableName: .byte 0

Gas doesn’t provide an explicit form for creating uninitialized vari-
ables, so you just supply a 0 operand for them. Here is an actual byte vari-
able declaration in Gas:

IntializedByte: .byte 5

Gas also does not provide an explicit directive for declaring an array
of byte objects, but you can use the .rept/.endr directives to create multiple
copies of the .byte directive as follows:

variableName:
 .rept sizeOfBlock
 .byte 0
 .endr

You can also supply a comma-delimited list of values to initialize the
array with different values.

Here are a couple of array declaration examples in Gas:

 .section .data ; Variables go in this section
InitializedArray0: ; Creates an array with elements 5,5,5,5
 .rept 4
 .byte 5
 .endr

InitializedArray1:
 .byte 0,1,2,3,4,5

For 16-bit objects, Gas uses the .int directive. Other than the size
of the object these directives declare, their use is identical to the byte
declarations:

 .section .data
GasWordVar: .int 0

; Create an array of four words, all initialized to 0:

PowerPC Assembly for the HLL Programmer 11

GasWordArray:
 .rept 4
 .int 0
 .endr

; Create an array of 16-bit words, initialized with
; the values 0, 1, 2, 3, and 4:

GasWordArray2: .int 0,1,2,3,4

For 32-bit objects, Gas uses the .long directive:

 .section .data
GasDWordVar: .long 0

; Create an array with four double-word values
; initialized to 0:

GasDWordArray:
 .rept 4
 .long 0
 .endr

; Create an array of double words initialized with
; the values 0, 1, 2, 3, 4:

GasDWordArray2: .long 0,1,2,3,4

For floating-point values, Gas uses the .single and .double directives
to reserve storage for an IEEE-format2 floating-point value (32 or 64 bits,
respectively). Because the PowerPC CPU does not support immediate float-
ing-point constants, if you need to reference a floating-point constant from
a machine instruction, you’ll need to place that constant in a memory vari-
able and access the memory variable instead. Here are some examples:

 .section .data
GasSingleVar: .single 0.0
GasDoubleVar: .double 1.0

; Create an array with four single-precision values
; initialized to 2.0:

GasSingleArray:
 .rept 4
 .single 2.0
 .endr

; Create an array of double-precision values initialized with
; the values 0.0, 1.1, 2.2, 3.3, and 4.4:

GasDWordArray2: .double 0.0,1.1,2.2,3.3,4.4

2. IEEE is the Institute of Electrical and Electronics Engineers.

12 Appendix B

B.7  Specifying Operand Sizes in Assembly Language
PowerPC instructions generally operate only on 32-bit or 64-bit data. Unlike
CISC processors, individual PowerPC instructions don’t operate on various
data types. The add instruction, for example, operates only on 32-bit values
(except on 64-bit implementations of the PowerPC, where it operates on
64-bit values when in 64-bit mode). Generally, this isn’t a problem. If two
PowerPC registers contain 8-bit values, you’ll get the same result by adding
those two 32-bit registers together that you’d get if they were 8-bit registers,
if you consider only the LO 8 bits of the sum.

Memory accesses, however, are a different matter. When reading and
(especially) writing data in memory, it’s important that the CPU access only
the desired data size. Therefore, the PowerPC provides some size-specific
load and store instructions that specify byte, 16-bit halfword, and 32-bit
word sizes.

B.8  The Minimal Instruction Set
Although the PowerPC CPU family supports hundreds of instructions,
few compilers actually use all of them. This is because many instructions
have become obsolete over time as newer instructions have emerged. Some
instructions, such as PowerPC’s AltiVec instructions, simply don’t corre-
spond to functions you’d normally perform in an HLL. As a result, compil-
ers rarely generate these types of machine instructions, which generally
appear only in handwritten assembly language programs. Fortunately, this
means you don’t need to learn the entire PowerPC instruction set in order
to study compiler output, but only the handful that compilers actually emit.

Many PowerPC instructions take multiple forms depending on whether
they modify the condition code and XER registers. An unadorned instruc-
tion mnemonic does not modify either register. A . (dot) suffix on certain
instructions tells the CPU to update the condition code CR0 bits based on
the result of the operation. An o suffix tells the CPU to update the overflow
and summary overflow bits in the XER register. Finally, an o. suffix tells the
CPU to update the bits in CR0 and the XER register. The following sections
group instructions together that differ only by these suffixes.

B.9  add, add., addo, addo.
The add instruction requires three register operands—a destination register
and two source registers. This instruction computes the sum of the values
in the two source registers and stores the sum into the destination register.

PowerPC Assembly for the HLL Programmer 13

Table B-2: Gas Syntax for add

Instruction Description

add Rd, Rs1, Rs2 Rd := Rs1 + Rs2
d, s1, and s2 are register numbers in the range 0..31.

add. Rd, Rs1, Rs2 Rd := Rs1 + Rs2
CR0 reflects the result of the sum.
d, s1, and s2 are register numbers in the range 0..31.

addo Rd, Rs1, Rs2 Rd := Rs1 + Rs2
The overflow and summary overflow bits in XER are set if
a signed overflow occurs.
d, s1, and s2 are register numbers in the range 0..31.

addo. Rd, Rs1, Rs2 Rd := Rs1 + Rs2
CR0 reflects the result of the sum.
The overflow and summary overflow bits in XER are set if
a signed overflow occurs.
d, s1, and s2 are register numbers in the range 0..31.

Table B-3: CR0 Settings for add. and addo.

Flag Setting

LT Set if the sum (signed) is less than 0.

GT Set if the sum (signed) is greater than 0.

Zero Set if the sum is 0.

SO The summary overflow bit from the XER is copied to this field after
computing the sum.

Table B-4: XER Settings for addo and addo.

Flag Setting

OV Set if a signed overflow occurred during the execution of the instruction.

SO Set if the SO bit was previously set, or if a signed overflow occurred
during the execution of the instruction.

CA Unaffected.

B.10  addi
The addi (add immediate) instruction adds a constant to the contents of a
source register and stores the sum into a destination register. The constant is
limited to a signed 16-bit value (which the instruction sign-extends to 32 bits
prior to use). This instruction does not affect any flags or the overflow bit.

The addi instruction treats R0 differently than the other registers. If you
specify R0 as the source register, addi uses the value 0 rather than the value
held in the R0 register. In this case, addi acts as a “load immediate with sign
extension” instruction (because adding an immediate constant with 0 sim-
ply produces that constant). Though the PowerPC doesn’t have an actual
“load immediate” instruction, most assemblers assemble the li instruction
into the addi opcode.

14 Appendix B

You’ll also discover that there’s no “subtract immediate” instruction,
even though assemblers like Gas support that mnemonic. Gas (and other
PowerPC assemblers) compiles a subi instruction into an addi instruction
after negating the immediate operand.

Table B-5: Gas Syntax for addi

Instruction Description

addi Rd, Rs, constant Rd := Rs+ constant
d and s are register numbers in the range 0..31.

B.11  addis
The addis (add immediate, shifted) instruction shifts a 16-bit constant
to the left 16 bits, adds this to the value from a source register, and then
stores the sum into a destination register. This instruction does not affect
any flags or the overflow bit.

The addis instruction treats R0 differently than the other registers. If
you specify R0 as the source register, addi uses the value 0 rather than the
value held in the R0 register.

Table B-6: Gas Syntax for addis

Instruction Description

addis Rd, Rs, constant Rd := Rs + (constant << 16)
d and s are register numbers in the range 0..31.

B.12  and, and.
The and instruction requires three register operands—a destination register
and two source registers. This instruction computes the logical (bitwise)
AND of the two source values and places the result in the destination register.

Table B-7: Gas Syntax for and

Instruction Description

and Rd, Rs1, Rs2 Rd := Rs1 AND Rs2
d, s1, and s2 are register numbers in the range 0..31.

and. Rd, Rs1, Rs2 Rd := Rs1 AND Rs2
CR0 reflects the result of the operation.
d, s1, and s2 are register numbers in the range 0..31.

PowerPC Assembly for the HLL Programmer 15

Table B-8: CR0 Settings for and.

Flag Setting

LT Set if the result (signed) is less than 0.

GT Set if the result (signed) is greater than 0.

Zero Set if the result is 0.

SO Unaffected.

B.13  andc, andc.
The andc instruction requires three register operands—a destination regis-
ter and two source registers. This instruction computes the logical (bitwise)
AND of the first source value with the inverted value of the second source
operand and places the result in the destination register.

Table B-9: Gas Syntax for andc

Instruction Description

andc Rd, Rs1, Rs2 Rd := Rs1 AND (NOT Rs2)
d, s1, and s2 are register numbers in the range 0..31.

andc. Rd, Rs1, Rs2 Rd := Rs1 AND (NOT Rs2)
CR0 reflects the result of the operation.
d, s1, and s2 are register numbers in the range 0..31.

Table B-10: CR0 Settings for andc.

Flag Setting

LT Set if the result (signed) is less than 0.

GT Set if the result (signed) is greater than 0.

Zero Set if the result is 0.

SO Unaffected.

B.14  andi
The andi (and immediate) instruction requires two register operands and a
16-bit constant. This instruction computes the logical (bitwise) AND of the
value in the second (source) register and the constant value and places
the result in the first (destination) register. Note that this instruction always
clears the HO bits of the destination register.

Table B-11: Gas Syntax for andi

Instruction Description

andi Rd, Rs, constant Rd := Rs AND constant
d and s are register numbers in the range 0..31.

16 Appendix B

B.15  andis
The andis (and immediate, shifted) instruction requires two register oper-
ands and a 16-bit constant. This instruction shifts the constant to the left
16 bits, logically ANDs this with the value held in the source register, and
then places the result in the destination register. Note that this instruction
always clears the LO bits of the destination register.

Table B-12: Gas Syntax for andis

Instruction Description

andis Rd, Rs, constant Rd := Rs AND (constant << 16)
d and s are register numbers in the range 0..31.

B.16  Branches
Standard PowerPC assembly language exposes the numeric encoding of
the opcode in the standard branch mnemonics. If you’re reading arbitrary
PowerPC assembly code, you may have to memorize “magic numbers” that
appear in the operand field of various branch instructions. Fortunately,
IBM has defined a set of “mnemonic synonyms” that use English names for
various numeric encodings, and compilers like GCC typically use the syn-
onyms rather than the numeric forms. In this section, we’ll discuss these
“simplified branch mnemonics.” If you encounter weird forms of the branch
instructions, you may want to consult PowerPC Microprocessor Family: The
Programmer’s Reference Guide (see “For More Information” on page 50) for
their exact interpretation.

The PowerPC branch instructions provide four basic addressing modes:
relative, absolute, indirect through LINK, and indirect through COUNT.
GCC doesn’t seem to use the absolute addressing mode (it’s useful mainly
in embedded systems where you have good control over the memory map),
so we won’t consider that form here.

B.16.1  Unconditional Branch (b), Relative
The branch relative instruction encodes a 24-bit relative displacement field
as part of the opcode. The CPU shifts this 24-bit value to the left two posi-
tions (producing a 26-bit value), sign-extends the result to 32 bits, and then
adds this displacement to the CPU’s program counter register (CIA, or cur-
rent instruction address, on the PowerPC).

Table B-13: Gas Syntax for b

Instruction Description

b target_address NIA := CIA + displacement
NIA is the next instruction address.
CIA is the current instruction address.
displacement is the distance from the current instruction to
the target_address.

PowerPC Assembly for the HLL Programmer 17

B.16.2  Unconditional Branch and Link (bl), Relative
The bl (branch and link) instruction operates almost identically to the
unconditional branch instruction. The only difference is that in addition to
transferring control, it also copies the address of the next instruction (after
the branch) into the LINK register. Programs generally use the bl instruc-
tion to call local subroutines.

Table B-14: Gas Syntax for bl

Instruction Description

bl target_address LINK := CIA + 4
NIA := CIA + displacement
NIA is the next instruction address.
CIA is the current instruction address.
displacement is the distance from the current instruction to
the target_address.

B.16.3  Indirect Branch Instructions (blr and bctr)
The PowerPC provides two instructions that transfer control to an address
held in either the LINK or COUNT register. The blr (branch to link reg-
ister) instruction is typically used to return control from some subroutine.
The bctr instruction is a general-purpose indirect branch that a compiler
can use to implement control statements like C’s switch statement.

Table B-15: Gas Syntax for blr and bctr

Instruction Description

blr NIA := LINK
NIA is the next instruction address.

bctr NIA := COUNT
NIA is the next instruction address.

B.16.4  Conditional Branch Instructions
The PowerPC provides a wide range of conditional branch instructions
that support the same addressing modes as the unconditional branches
(relative, absolute, indirect through LINK, and indirect through COUNT).
There are also forms that will save the address of the next instruction in
the LINK register. The raw form of these conditional branch instructions
allows you to test the condition bits found in any of the eight PowerPC con-
dition code registers (CR0 through CR7). However, most assemblers (like
Gas) provide “simplified mnemonics” that let you test a specific condition in
CR0. As these are the branch instructions you’ll see used most often, we’ll
discuss them here. For details on the other forms, see the PowerPC pro-
grammer’s reference manual.

The conditional branches support only a 16-bit displacement (14 bits
extended to 16 bits, actually). Therefore, the range of the conditional

18 Appendix B

branches is substantially less than the unconditional branches. This gener-
ally isn’t much of a problem, as conditional branches do not transfer control
over great distances in typical programs.

Table B-16: Gas Syntax for Conditional Branches

Instruction Description

blt target Branch if less than.
If the LT bit in CR0 is set, then add the 16-bit
displacement to the current instruction address (CIA) to
obtain the next instruction address (NIA). Otherwise, set
the NIA to CIA + 4.

ble target Branch if less than or equal.
If the LT or EQ bit in CR0 is set, then add the 16-bit
displacement to the current instruction address (CIA) to
obtain the next instruction address (NIA). Otherwise, set
the NIA to CIA + 4.

beq target Branch if equal.
If the EQ bit in CR0 is set, then add the 16-bit
displacement to the current instruction address (CIA) to
obtain the next instruction address (NIA). Otherwise, set
the NIA to CIA + 4.

bgt target Branch if greater than.
If the GT bit in CR0 is set, then add the 16-bit
displacement to the current instruction address (CIA) to
obtain the next instruction address (NIA). Otherwise, set
the NIA to CIA + 4.

bge target Branch if greater than or equal.
If the GT or EQ bit in CR0 is set, then add the 16-bit
displacement to the current instruction address (CIA) to
obtain the next instruction address (NIA). Otherwise, set
the NIA to CIA + 4.

bnl target Branch if not less than.
Synonym for bge.

bne target Branch if not equal.
If the EQ bit in CR0 is clear, then add the 16-bit
displacement to the current instruction address (CIA) to
obtain the next instruction address (NIA). Otherwise, set
the NIA to CIA + 4.

bng target Branch if not greater than.
Synonym for ble.

bso target Branch if summary overflow.
If the SO bit in CR0 is set, then add the 16-bit
displacement to the current instruction address (CIA) to
obtain the next instruction address (NIA). Otherwise, set
the NIA to CIA + 4.

bns target Branch if not summary overflow.
If the SO bit in CR0 is clear, then add the 16-bit
displacement to the current instruction address (CIA) to
obtain the next instruction address (NIA). Otherwise, set
the NIA to CIA + 4.

PowerPC Assembly for the HLL Programmer 19

B.16.5  Indirect Conditional Branches
In addition to the relative conditional branches, the PowerPC also sup-
ports indirect versions that transfer control to the address held in the
LINK or COUNT register. These instructions do not have any operands
(as the LINK or COUNT register specifies the target address) and use
the following syntax.

Table B-17: Indirect Conditional Branches

Indirect branch Description
LINK COUNT

bltlr bltctr Branch if less than, indirect.
blelr blectr Branch if less than or equal, indirect.
beqlr beqctr Branch if equal, indirect.
bgtlr bgtctr Branch if greater than, indirect.
bgelr bgectr Branch if greater than or equal.
bnllr bnlctr Branch if not less than.

Synonym for bge.
bnelr bnectr Branch if not equal.
bnglr bngctr Branch if not greater than.
bsolr bsoctr Branch if summary overflow.
bnslr bnsctr Branch if not summary overflow.

B.16.6  Other Branch Forms
The PowerPC provides a bewildering array of branch instructions. We don’t
use many of those other forms in this book, so there’s no need to consider
them here. See the PowerPC Microprocessor Family: The Programmer’s Reference
Guide (https://www.cebix.net/downloads/bebox/PRG.pdf) for more details on the
available forms of the branch instructions.

B.17  cmp
The cmp instruction compares the signed values in two registers and updates
the bits in one of the condition code registers to reflect the comparison’s
results. By default, cmp assumes that you wish to use CR0 to hold the result,
though it is possible to specify a different condition code register as the tar-
get for the comparison operation.

The cmp instruction sets the LT bit in the condition code register if the
first operand is less than the second operation (using a signed compari-
son). It sets the GT bit if the first operand is greater than the second. It sets
the EQ bit if the two register operands hold the same value. This instruc-
tion also copies the summary overflow bit from the XER register into the
SO bit of the condition code register.

20 Appendix B

Table B-18: Gas Syntax for cmp

Instruction Description

cmp Rs1, Rs2 CR0 := Rs1 CMP Rs2
s1 and s2 are register numbers in the range 0..31.

Table B-19: CR0 Settings for cmp

Flag Setting

LT Set if the value in Rs1 (signed) is less than Rs2.

GT Set if the value in Rs1 (signed) is greater than Rs2.

Zero Set if values in Rs1 and Rs2 are equal.

SO Copied from the SO bit in the XER register.

B.18  cmpi
The cmpi (compare immediate) instruction compares the signed value in a
register against a constant and updates the bits in one of the condition code
registers. By default, the cmpi instruction assumes that you wish to use CR0
to hold the result, though it’s possible to specify a different condition code
register as the target for the comparison operation.

Table B-20: Gas Syntax for cmpi

Instruction Description

cmpi Rs, constant CR0 := Rs CMP constant
s is a register number in the range 0..31.
constant is a 16-bit signed constant.

Table B-21: CR0 Settings for cmpi

Flag Setting

LT Set if the value in Rs1 (signed) is less than constant.

GT Set if Rs’s value (signed) is greater than constant.

Zero Set if value in Rs1 is equal to constant.

SO Copied from the SO bit in the XER register.

B.19  cmpl
The cmpl (compare logical) instruction is similar to cmp except that it does
an unsigned comparison rather than a signed comparison. The syntax and
usage is the same (except, of course, that you use the cmpl mnemonic). See
cmp for more details.

PowerPC Assembly for the HLL Programmer 21

B.20  cmpli
The cmpli (compare logical immediate) instruction is similar to cmpi except
it does an unsigned comparison. The syntax and usage is similar to cmpi
except that you use the cmpli mnemonic and the 16-bit constant must be an
unsigned value in the range 0 through 65,535. See cmpi for more details.

B.21  divw, divw., divwo, divwo.
The divw (divide word, signed) instruction divides the value in one register
by the value in a second register and stores the signed quotient into a third
register. The version with the period suffix updates CR0 after the division
operation by comparing the quotient against zero. The version with the o
suffix updates the overflow flag if the division operation is illegal (for exam-
ple, a division by zero).

Table B-22: Gas Syntax for divw

Instruction Description

divw Rd, Rs1, Rs2 Rd := Rs1 / Rs2
d, s1, and s2 are register numbers in the range 0..31.

divw. Rd, Rs1, Rs2 Rd := Rs1 / Rs2
CR0 reflects the result of the quotient.
d, s1, and s2 are register numbers in the range 0..31.

divwo Rd, Rs1, Rs2 Rd := Rs1 / Rs2
The overflow and summary overflow bits in XER are set if
an error occurs.
d, s1, and s2 are register numbers in the range 0..31.

divwo. Rd, Rs1, Rs2 Rd := Rs1 / Rs2
CR0 reflects the result of the quotient.
The overflow and summary overflow bits in XER are set if
an error occurs.
d, s1, and s2 are register numbers in the range 0..31.

Table B-23: CR0 Settings for divw. and divwo.

Flag Setting

LT Set if the quotient (signed) is less than 0.

GT Set if the quotient (signed) is greater than 0.

Zero Set if the quotient is 0.

SO The summary overflow bit from the XER is copied to this field after
computing the sum.

22 Appendix B

Table B-24: XER Settings for divwo and divwo.

Flag Setting

OV Set if an error (division by zero or overflow) occurred during the
execution of the instruction.

SO Set if the SO bit was previously set, or if a division error occurred during
the execution of the instruction.

CA Unaffected.

B.22  divwu, divwu., divwuo, divwuo.
The divwu (divide word, unsigned) instruction divides the value in one reg-
ister by the value in a second register and stores the unsigned quotient in
a third register. The version with the period suffix updates CR0 after the
division operation by comparing the quotient against zero. The version with
the o suffix updates the overflow flag if the division operation is illegal (for
example, a division by zero).

Table B-25: Gas Syntax for divwu

Instruction Description

divwu Rd, Rs1, Rs2 Rd := Rs1 / Rs2
d, s1, and s2 are register numbers in the range 0..31.

divwu. Rd, Rs1, Rs2 Rd := Rs1 / Rs2
CR0 reflects the result of the quotient.
d, s1, and s2 are register numbers in the range 0..31.

divwuo Rd, Rs1, Rs2 Rd := Rs1 / Rs2
The overflow and summary overflow bits in XER are set if
an error occurs.
d, s1, and s2 are register numbers in the range 0..31.

divwuo. Rd, Rs1, Rs2 Rd := Rs1 / Rs2
CR0 reflects the result of the quotient.
The overflow and summary overflow bits in XER are set if
an error occurs.
d, s1, and s2 are register numbers in the range 0..31.

Table B-26: CR0 Settings for divwu. and divwuo.

Flag Setting

LT Set if the quotient is less than 0.

GT Set if the quotient is greater than 0.

Zero Set if the quotient is 0.

SO The summary overflow bit from the XER is copied to this field after
computing the sum.

PowerPC Assembly for the HLL Programmer 23

Table B-27: XER Settings for divwuo and divwuo.

Flag Setting

OV Set if an error (division by zero or overflow) occurred during the
execution of the instruction.

SO Set if the SO bit was previously set, or if a division error occurred during
the execution of the instruction.

CA Unaffected.

B.23  equ, equ.
The equ instruction requires three register operands—a destination regis-
ter and two source registers. This instruction computes the logical XNOR
of the two source values and places the result in the destination register.
XNOR is also known as the “equals” function, hence the mnemonic. EQU
does a bit-by-bit comparison of two 32-bit values and stores a 1 in the corre-
sponding destination bit position if the two source bit values are equal, and
stores a 0 in the destination bit position if the two source bits are not equal.

Table B-28: Gas Syntax for equ

Instruction Description

equ Rd, Rs1, Rs2 Rd := Rs1 == Rs2
d, s1, and s2 are register numbers in the range 0..31.

equ. Rd, Rs1, Rs2 Rd := Rs1 == Rs2
CR0 reflects the result of the operation.
d, s1, and s2 are register numbers in the range 0..31.

Table B-29: CR0 Settings for equ.

Flag Setting

LT Set if the result (signed) is less than 0.

GT Set if the result (signed) is greater than 0.

Zero Set if the result is 0.

SO Unaffected.

B.24  extsb, extsb.
The extsb instruction sign-extends an 8-bit value to 32 bits. This instruction
requires two register operands—a source register and a destination regis-
ter. It extracts the byte from the LO 8 bits of the first register, sign-extends
the value to 32 bits, and then stores the result into the destination register.

24 Appendix B

Table B-30: Gas Syntax for extsb

Instruction Description

extsb Rd, Rs Rd := signExtend(Rs[0..7])
d and s are register numbers in the range 0..31.

extsb. Rd, Rs Rd := signExtend(Rs[0..7])
d and s are register numbers in the range 0..31.

Table B-31: CR0 Settings for extsb.

Flag Setting

LT Set if the result (signed) is less than 0.

GT Set if the result (signed) is greater than 0.

Zero Set if the result is 0.

SO Unaffected.

B.25  extsh, extsh.
The extsh instruction sign-extends a 16-bit (halfword) value to 32 bits. This
instruction requires two register operands—a source register and a des-
tination register. It extracts the halfword from the LO 16 bits of the first
register, sign-extends the value to 32 bits, and then stores the result into the
destination register.

Table B-32: Gas Syntax for extsh

Instruction Description

extsh Rd, Rs Rd := signExtend(Rs[0..15])
d and s are register numbers in the range 0..31.

extsh. Rd, Rs Rd := signExtend(Rs[0..15])
d and s are register numbers in the range 0..31.

Table B-33: CR0 Settings for extsh.

Flag Setting

LT Set if the result (signed) is less than 0.

GT Set if the result (signed) is greater than 0.

Zero Set if the result is 0.

SO Unaffected.

B.26  la
The la (load address) instruction is a synonym for the addi instruction. This
instruction computes the effective address of a displacement plus register
addressing mode and places the address in a destination register.

PowerPC Assembly for the HLL Programmer 25

Table B-34: Gas Syntax for la

Instruction Description

la Rd, disp(Rs) Rd := constant + Rs
d and s are register numbers in the range 0..31.
This instruction is equivalent to:
addi Rd, Rs, constant

B.27  lbz, lbzu, lbzux, lbzx
The lbz (load byte and zero) instruction fetches a byte from memory at an
address specified by the displacement plus register addressing mode. The
lbz instruction zero-extends this 8-bit value to 32 bits and stores the result
in the destination register.

The lbzu (load byte and zero, with update) works in a similar man-
ner except that it also updates the base address register with the effective
address of the byte in memory.

The lbzx (load byte and zero, indexed) also zero-extends an 8-bit value
in memory to 32 bits and loads this result into a destination register. This
form of the instruction, however, uses both a base and index register (with
no displacement).

The lbzux (load byte and zero, indexed, with update) is just like lbzx
except it also updates the base register with the effective address after mov-
ing the byte into the destination register.

Table B-35: Gas Syntax for lbz

Instruction Description

lbz Rd, disp(Rs) Rd := zeroExtend(mem8[disp + Rs])
d and s are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem8[--] is the byte at the memory address specified
by disp + Rs.
If Rs is R0, then this instruction substitutes the value 0
for R0.

lbzu Rd, disp(Rs) Rd := zeroExtend(mem8[disp + Rs])
Rs := disp + Rs
d and s are register numbers in the range 0..31.
disp is a 16-bit signed constant.
If Rs is R0, or Rs and Rd are the same, this is an invalid
instruction.

lbzx Rd, Rs, Rx Rd := zeroExtend(mem8[Rs + Rx])
d, s, and x are register numbers in the range 0..31.
If Rs is R0, then this instruction uses 0 as the value for Rs.

lbzux Rd, Rs, Rx Rd := zeroExtend(mem8[Rs + Rx])
Rs := Rs + Rx
d, s, and x are register numbers in the range 0..31.
If Rs is R0, or Rs and Rd are the same, this is an invalid
instruction.

26 Appendix B

B.28  lha, lhau, lhax, lhaux
The lha (load halfword, algebraic) instruction fetches a 16-bit word from
memory at an address specified by the displacement plus register address-
ing mode. The lha instruction sign-extends this 16-bit value to 32 bits and
stores the result in the destination register.

The lhau (load halfword, algebraic, with update) works in a similar
manner except that it also updates the base register with the effective
address of the halfword in memory.

The lhax (load halfword, algebraic, indexed) also sign-extends a 16-bit
value in memory to 32 bits and loads this result into a destination register.
This form of the instruction, however, uses both a base and index register
(with no displacement).

The lhaux (load halfword, algebraic, indexed, with update) is just like
lhax except it also updates the base register with the effective address after
moving the halfword into the destination register.

Table B-36: Gas Syntax for lha

Instruction Description

lha Rd, disp(Rs) Rd := signExtend(mem16[disp + Rs])
d and s are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem16[--] is the 16-bit halfword at the memory address
specified by disp + Rs.
If Rs is R0, then this instruction substitutes the value 0
for R0.

lhau Rd, disp(Rs) Rd := signExtend(mem16[disp + Rs])
Rs := disp + Rs
d and s are register numbers in the range 0..31.
disp is a 16-bit signed constant.
If Rs is R0, or Rs and Rd are the same, this is an invalid
instruction.

lhax Rd, Rs, Rx Rd := signExtend(mem16[Rs + Rx])
d, s, and x are register numbers in the range 0..31.
If Rs is R0, then this instruction uses 0 as the value for Rs.

lhaux Rd, Rs, Rx Rd := signExtend(mem16[Rs + Rx])
Rs := Rs + Rx
d, s, and x are register numbers in the range 0..31.
If Rs is R0, or Rs and Rd are the same, this is an invalid
instruction.

B.29  lhz, lhzu, lhzx, lhzux
The lhz (load halfword and zero) instruction fetches a 16-bit word from
memory at an address specified by the displacement plus register address-
ing mode. The lhz instruction zero-extends this 16-bit value to 32 bits and
stores the result in the destination register.

PowerPC Assembly for the HLL Programmer 27

The lhzu (load halfword and zero, with update) works in a similar man-
ner except that it also updates the base register with the effective address of
the halfword in memory.

The lhzx (load halfword and zero, indexed) also zero-extends a 16-bit
value in memory to 32 bits and loads this result into a destination register.
This form of the instruction, however, uses both a base and index register
(with no displacement).

The lhzux (load halfword and zero, indexed, with update) is just like
lhzx except it also updates the base register with the effective address after
moving the halfword into the destination register.

Table B-37: Gas Syntax for lhz

Instruction Description

lhz Rd, disp(Rs) Rd := zeroExtend(mem16[disp + Rs])
d and s are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem16[--] is the 16-bit halfword at the memory address
specified by disp + Rs.
If Rs is R0, then this instruction substitutes the value 0
for R0.

lhzu Rd, disp(Rs) Rd := zeroExtend(mem16[disp + Rs])
Rs := disp + Rs
d and s are register numbers in the range 0..31.
disp is a 16-bit signed constant.
If Rs is R0, or Rs and Rd are the same, this is an invalid
instruction.

lhzx Rd, Rs, Rx Rd := zeroExtend(mem16[Rs + Rx])
d, s, and x are register numbers in the range 0..31.
If Rs is R0, then this instruction uses 0 as the value for Rs.

lhzux Rd, Rs, Rx Rd := zeroExtend(mem16[Rs + Rx])
Rs := Rs + Rx
d, s, and x are register numbers in the range 0..31.
If Rs is R0, or Rs and Rd are the same, this is an invalid
instruction.

B.30  li
The li (load immediate) instruction is a synonym for the addi instruction
with R0 specified as the source register. This instruction loads a sign-
extended 16-bit value into the specified destination register.

Table B-38: Gas Syntax for li

Instruction Description

li Rd, constant Rd := constant
d is a register number in the range 0..31.
This instruction is equivalent to:
addi Rd, 0, constant

28 Appendix B

B.31  lis
The lis (load immediate, shifted) instruction shifts a 16-bit constant to the
left 16 bits and then stores the value into a destination register. This instruc-
tion does not affect any flags or the overflow bit.

Table B-39: Gas Syntax for lis

Instruction Description

lis Rd, constant Rd := (constant << 16)
d is a register number in the range 0..31.
This instruction is a synonym for
addis Rd, 0, constant

B.32  lmw
The lmw (load multiple word) loads a group of registers from a contiguous
block of memory. This instruction has two operands: a starting destination
register and a displacement plus register effective memory address. This
instruction loads all the registers from the destination register through
R31, starting at the specified memory location. This instruction is quite
useful for saving a batch of scratch-pad registers or for quickly moving
blocks of memory around. Note that the base register used in the memory
addressing mode must not be present in the range of registers loaded by
this instruction.

Table B-40: Gas Syntax for lmw

Instruction Description

lmw Rd, disp(Rs) Rd..R31 := mem32[disp + Rs]...
d and s are register numbers in the range 0..31 and s
must be less than d.
disp is a 16-bit signed constant.
mem32[--]... represents n consecutive 32-bit words in
memory, where
n = 31 – d + 1

B.33  lwz, lwzu, lwzx, lwzux
The lwz (load word and zero) instruction fetches a 32-bit word from mem-
ory at an address specified by the displacement plus register addressing
mode. (The z suffix exists for 64-bit members of the PowerPC family, in
which case this instruction zero-extends the memory value to 64 bits.)

The lwzu (load word and zero, with update) works in a similar manner
except that it also updates the source register with the effective address of
the word in memory.

The lwzx (load word and zero, indexed) also loads a 32-bit value from
memory into a destination register. This form of the instruction, however,
uses both a base and index register (with no displacement).

PowerPC Assembly for the HLL Programmer 29

The lszux (load word and zero, indexed, with update) is just like lszx
except it also updates the base register with the effective address after mov-
ing the 32-bit word into the destination register.

Table B-41: Gas Syntax for lwz

Instruction Description

lwz Rd, disp(Rs) Rd := mem32[disp + Rs]
d and s are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem32[--] is the 32-bit word at the memory address
specified by disp + Rs.
If Rs is R0, then this instruction substitutes the value 0
for R0.

lwzu Rd, disp(Rs) Rd := mem32[disp + Rs]
Rs := disp + Rs
d and s are register numbers in the range 0..31.
disp is a 16-bit signed constant.
If Rs is R0, or Rs and Rd are the same, this is an invalid
instruction.

lszx Rd, Rs, Rx Rd := mem32[Rs + Rx]
d, s, and x are register numbers in the range 0..31.
If Rs is R0, then this instruction uses 0 as the value for Rs.

lwzux Rd, Rs, Rx Rd := mem32[Rs + Rx]
Rs := Rs + Rx
d, s, and x are register numbers in the range 0..31.
If Rs is R0, or Rs and Rd are the same, this is an invalid
instruction.

B.34  mcrf
The mcrf (move condition register field) instruction moves the data from
one condition code register field to another.

Table B-42: Gas Syntax for mcrf

Instruction Description

mcrf CRd, CRs CRd := CRs
d and s are condition code register numbers in the
range 0..7.

B.35  mcrxr
The mcrxr (move condition register field from XER) instruction copies bits 0
through 3 of the XER register (the SO, OV, and CA flags, along with a 0 bit)
into the specified condition code register. This instruction also clears bits 0
through 3 of the XER register.

30 Appendix B

Table B-43: Gas Syntax for mcrxr

Instruction Description

mcrxr CRd CRd := XER[0..3]
d is a condition code register number in the range 0..7.

Table B-44: CRd Settings for mcrxr.

Flag Setting

LT SO field from XER

GT OV field from XER

Zero CA field from XER

SO 0

Table B-45: XER Settings for mcrxr.

Flag Setting

SO 0

OV 0

CA 0

B.36  mfcr
The mfcr (move from condition register) instruction copies the entire 32-bit
condition code register into a general-purpose register.

Table B-46: Gas Syntax for mfcr

Instruction Description

mfcr Rd Rd := CR[0..7]
d is a general-purpose register number in the range 0..31.

B.37  mfctr
The mfctr (move from COUNT register) instruction copies the contents of
the COUNT register into a general-purpose register.

Table B-47: Gas Syntax for mfctr

Instruction Description

mfctr Rd Rd := COUNT
d is a general-purpose register number in the range 0..31.

PowerPC Assembly for the HLL Programmer 31

B.38  mflr
The mflr (move from LINK register) instruction copies the contents of the
LINK register into a general-purpose register.

Table B-48: Gas Syntax for mflr

Instruction Description

mflr Rd Rd := LINK
d is a general-purpose register number in the range 0..31.

B.39  mr
The mr (move register) instruction requires two register operands—a desti-
nation register and a source register. This instruction copies the value held
in the source register to the destination register. Note that this is a special
form of the or instruction that supplies the source register as both oper-
ands. See the or instruction for more details.

Table B-49: Gas Syntax for mr

Instruction Description

mr Rd, Rs Rd := Rs
d and s are register numbers in the range 0..31.

B.40  mtcrf
The mtcrf (move to condition register fields) instruction copies zero or
more blocks of 4 bits into one of the condition code fields in the condition
code register. This instruction has two operands: an 8-bit bitmap that speci-
fies which condition code fields to update, and a general-purpose 32-bit
register. For each set bit in the bitmap, this instruction copies the corre-
sponding 4 bits in the general-purpose register to the corresponding posi-
tions in the condition code register. If a bit in the bitmap contains 0, then
the corresponding bits in the condition code field are unaffected by this
instruction.

Table B-50: Gas Syntax for mtcrf

Instruction Description

mtcrf bitmap, Rd CRn := Rd[n*4..n*4+3], but only
if bitmap[n] == 1.
d is a general-purpose register number in the range 0..31.
bitmap is an 8-bit constant.

32 Appendix B

B.41  mtctr
The mtctr (move to COUNT) instruction copies the value from a general-
purpose integer register to the COUNT register.

Table B-51: Gas Syntax for mtctr

Instruction Description

mtctr Rd COUNT := Rd
d is a general-purpose register number in the range 0..31.

B.42  mtlr
The mtlr (move to LINK) instruction copies the value from a general-
purpose integer register to the LINK register.

Table B-52: Gas Syntax for mtlr

Instruction Description

mtlr Rd LINK := Rd
d is a general-purpose register number in the range 0..31.

B.43  mtxer
The mtxer (move to XER) instruction copies the value from a general-purpose
integer register to the XER register.

Table B-53: Gas Syntax for mtxer

Instruction Description

mtxer Rd XER := Rd
d is a general-purpose register number in the range 0..31.

B.44  mulhw, mulhw.
The mulhw (multiply high word) instruction produces the HO 32 bits of a
32 × 32 multiplication of two registers. It stores the HO 32 bits of the product
in a third register. This instruction performs a signed integer multiplication.

Table B-54: Gas Syntax for mulhw

Instruction Description

mulhw Rd, Rs1, Rs2 Rd := HO32(Rs1 × Rs2) (signed)
d, s1, and s2 are register numbers in the range 0..31.

mulhw. Rd, Rs1, Rs2 Rd := HO32(Rs1 × Rs2) (signed)
d, s1, and s2 are register numbers in the range 0..31.
This form updates CR0 (see Table B-55).

PowerPC Assembly for the HLL Programmer 33

Table B-55: CR0 Settings for mulhw.

Flag Setting

LT Set if the signed result is less than 0.

GT Set if the signed result is greater than 0.

Zero Set if the result is equal to 0.

SO Copied from the SO bit in the XER register.

B.45  mulhwu, mulhwu.
The mulhwu (multiply high word, unsigned) instruction produces the HO
32 bits of an unsigned 32 × 32 multiplication of two registers. It stores the
HO 32 bits of the product in a third register.

Table B-56: Gas Syntax for mulhwu

Instruction Description

mulhwu Rd, Rs1, Rs2 Rd := HO32(Rs1 * Rs2) (unsigned)
d, s1, and s2 are register numbers in the range 0..31.

mulhwu. Rd, Rs1, Rs2 Rd := HO32(Rs1 × Rs2) (unsigned)
d, s1, and s2 are register numbers in the range 0..31.
This form updates CR0 (see Table B-55).

Table B-57: CR0 Settings for mulhwu.

Flag Setting

LT Set if the signed result is less than 0.

GT Set if the signed result is greater than 0.

Zero Set if the result is equal to 0.

SO Copied from the SO bit in the XER register.

B.46  mulli
The mulli (multiply low word, immediate) instruction produces the LO 32
bits of a 32 × 32 multiplication of two registers. It stores the LO 32 bits of
the product in a third register. Note that this instruction is suitable for both
signed and unsigned operands, as the LO 32 bits of the product is the same
for both operand types.

Table B-58: Gas Syntax for mulli

Instruction Description

mulli Rd, Rs, constant Rd := Rs × constant
d and s are register numbers in the range 0..31.
constant is a 16-bit signed integer, which this instruction
sign-extends to 32 bits before the multiplication occurs.

34 Appendix B

B.47  mullw, mullw., mullwo, mullwo.
The mullw (multiply low word) instruction computes the LO 32 bits of a
32 × 32 multiplication of two registers. It stores the LO 32 bits of the product
in a third register. The LO 32 bits of a 32 × 32 multiplication is the same for
both signed and unsigned multiplications, so you’d use this instruction to
compute the result for either type of data.

Table B-59: Gas Syntax for mullw

Instruction Description

mullw Rd, Rs1, Rs2 Rd := Rs1 * Rs2 (LO 32 bits)
d, s1, and s2 are register numbers in the range 0..31.

mullwo Rd, Rs1, Rs2 Rd := Rs1 * Rs2 (LO 32 bits)
d, s1, and s2 are register numbers in the range 0..31.
This form updates XER.

mullw. Rd, Rs1, Rs2 Rd := Rs1 * Rs2 (LO 32 bits)
d, s1, and s2 are register numbers in the range 0..31.
This form updates CR0.

mullwo. Rd, Rs1, Rs2 Rd := Rs1 × Rs2 (LO 32 bits)
d, s1, and s2 are register numbers in the range 0..31.
This form updates XER and CR0.

Table B-60: CR0 Settings for mullw. and mullwo.

Flag Setting

LT Set if the signed result is less than 0.

GT Set if the signed result is greater than 0.

Zero Set if the result is equal to 0.

SO Copied from the SO bit in the XER register.

Table B-61: XER Settings for mullwo and mullwo.

Flag Setting

SO Set if SO was previously set, or the signed result does not fit into 32 bits.

OV Set if the signed result does not fit into 32 bits.

CA Unaffected.

B.48  nand, nand.
The nand instruction requires three register operands—a destination regis-
ter and two source registers. This instruction computes the logical (bitwise)
NAND (NOT AND) of the two source values and places the result in the
destination register.

PowerPC Assembly for the HLL Programmer 35

Table B-62: Gas Syntax for nand

Instruction Description

nand Rd, Rs1, Rs2 Rd := Rs1 NAND Rs2
d, s1, and s2 are register numbers in the range 0..31.

nand. Rd, Rs1, Rs2 Rd := Rs1 NAND Rs2
CR0 reflects the result of the operation.
d, s1, and s2 are register numbers in the range 0..31.

Table B-63: CR0 Settings for nand.

Flag Setting

LT Set if the result (signed) is less than 0.

GT Set if the result (signed) is greater than 0.

Zero Set if the result is 0.

SO Unaffected.

B.49  neg, neg., nego, nego.
The neg instruction requires two register operands—a destination register
and a source register. This instruction computes the two’s complement of
the value in the source register (that is, it negates the value) and places the
result into the destination register.

Table B-64: Gas Syntax for neg

Instruction Description

neg Rd, Rs Rd := -Rs
d and s are register numbers in the range 0..31.

neg. Rd, Rs Rd := -Rs
CR0 reflects the result of the negation.
d and s are register numbers in the range 0..31.

nego Rd, Rs Rd := -Rs
The overflow and summary overflow bits in XER are set
if a signed overflow occurs (this occurs if you attempt to
negate the most negative value).
d and s are register numbers in the range 0..31.

nego. Rd, Rs Rd := Rs
CR0 reflects the result of the sum.
The overflow and summary overflow bits in XER are set if
a signed overflow occurs.
d and s are register numbers in the range 0..31.

36 Appendix B

Table B-65: CR0 Settings for neg. and nego.

Flag Setting

LT Set if the result is less than 0.

GT Set if the result is greater than 0.

Zero Set if the result is 0.

SO The summary overflow bit from the XER is copied to this field after
computing the sum.

Table B-66: XER Settings for nego and nego.

Flag Setting

OV Set if a signed overflow occurred during the execution of the instruction.
This occurs if you attempt to negate the most negative value in the two’s
complement system ($8000_0000 for 32-bit values).

SO Set if the SO bit was previously set, or if a signed overflow occurred
during the execution of the instruction.

CA Unaffected.

B.50  nor, nor.
The nor instruction requires three register operands—a destination register
and two source registers. This instruction computes the logical (bitwise)
NOR (NOT OR) of the two source values and places the result in the desti-
nation register. If both source operands are the same register, this instruc-
tion computes the logical NOT operation of that register.

Table B-67: Gas Syntax for nor

Instruction Description

nor Rd, Rs1, Rs2 Rd := Rs1 NOR Rs2
d, s1, and s2 are register numbers in the range 0..31.

nor. Rd, Rs1, Rs2 Rd := Rs1 NOR Rs2
CR0 reflects the result of the operation.
d, s1, and s2 are register numbers in the range 0..31.

Table B-68: CR0 Settings for nor.

Flag Setting

LT Set if the result (signed) is less than 0.

GT Set if the result (signed) is greater than 0.

Zero Set if the result is 0.

SO Unaffected.

PowerPC Assembly for the HLL Programmer 37

B.51  or, or.
The or instruction requires three register operands—a destination register
and two source registers. This instruction computes the logical (bitwise)
OR of the two source values and places the result in the destination register.
If both source operands are the same register, this instruction is a synonym
for the mr (move register) instruction (see mr for more details).

Table B-69: Gas Syntax for or

Instruction Description

or Rd, Rs1, Rs2 Rd := Rs1 OR Rs2
d, s1, and s2 are register numbers in the range 0..31.

or. Rd, Rs1, Rs2 Rd := Rs1 OR Rs2
CR0 reflects the result of the operation.
d, s1, and s2 are register numbers in the range 0..31.

Table B-70: CR0 Settings for or.

Flag Setting

LT Set if the result (signed) is less than 0.

GT Set if the result (signed) is greater than 0.

Zero Set if the result is 0.

SO Unaffected.

B.52  orc, orc.
The orc instruction requires three register operands—a destination register
and two source registers. This instruction computes the logical (bitwise)
OR of the first source value with the inverted value of the second source
operand and places the result in the destination register.

Table B-71: Gas Syntax for orc

Instruction Description

orc Rd, Rs1, Rs2 Rd := Rs1 OR (NOT Rs2)
d, s1, and s2 are register numbers in the range 0..31.

orc. Rd, Rs1, Rs2 Rd := Rs1 OR (NOT Rs2)
CR0 reflects the result of the operation.
d, s1, and s2 are register numbers in the range 0..31.

38 Appendix B

Table B-72: CR0 Settings for orc.

Flag Setting

LT Set if the result (signed) is less than 0.

GT Set if the result (signed) is greater than 0.

Zero Set if the result is 0.

SO Unaffected.

B.53  ori
The ori (or immediate) instruction requires two register operands and
a 16-bit constant. This instruction logically ORs the constant with the
value held in the source register, and then places the result in the destina-
tion register.

Table B-73: Gas Syntax for ori

Instruction Description

oris Rd, Rs, constant Rd := Rs OR constant
d and s are register numbers in the range 0..31.

B.54  oris
The oris (or immediate, shifted) instruction requires two register operands
and a 16-bit constant. This instruction shifts the constant to the left 16 bits,
logically ORs this with the value held in the source register, and then places
the result in the destination register.

Table B-74: Gas Syntax for oris

Instruction Description

oris Rd, Rs, constant Rd := Rs OR (constant << 16)
d and s are register numbers in the range 0..31.

B.55  rlwimi, rlwimi.
The rlwimi (rotate left word immediate, then mask insert) instruction
requires five operands—a destination register, a source register, and three
immediate operands. This instruction rotates the source operand to the
left by the number of bits specified by its first immediate operand (the third
operand), and then extracts bits mb and me (the second and third immediate
operands) from this result and inserts them into the destination register
(without affecting the bits outside the range mb through me in the destina-
tion register).

PowerPC Assembly for the HLL Programmer 39

Table B-75: Gas Syntax for rlwimi

Instruction Description

rlwimi Rd, Rs, n, mb, me Rd := (Rd AND mask0(mb..me)) OR
 ((Rd ROL n) AND mask1(mb..me))
n is a constant specifying the number of bits to rotate in
the source register.
mb and me specify the beginning and ending bit positions
for the mask.
mask0(a..b) is a set of 0 bits in positions a..b and 1s
everywhere else.
mask1(a..b) is a set of 1 bits in positions a..b and 0s
everywhere else.
d and s are register numbers in the range 0..31.

rlwimi. Rd, Rs, n, mb, me Rd := (Rd AND mask0(mb..me)) OR
 ((Rd ROL n) AND mask1(mb..me))
CR0 reflects the result of the operation.
n is a constant specifying the number of bits to rotate in
the source register.
mb and me specify the beginning and ending bit positions
for the mask.
mask0(a..b) is a set of 0 bits in positions a..b and 1s
everywhere else.
mask1(a..b) is a set of 1 bits in positions a..b and 0s
everywhere else.
d and s are register numbers in the range 0..31.

Table B-76: CR0 Settings for rlwimi.

Flag Setting

LT Set if the result (signed) is less than 0.

GT Set if the result (signed) is greater than 0.

Zero Set if the result is 0.

SO Unaffected.

B.56  rlwinm, rlwinm.
The rlwinm (rotate left word immediate, then AND with mask) instruction
requires five operands—a destination register, a source register, and three
immediate operands. This instruction rotates the source operand to the
left by the number of bits specified by its first immediate operand (the third
operand), and then extracts bits mb and me (the second and third immediate
operands) from this result and stores the result into the destination register
(with 0s in bit positions outside the mask range).

40 Appendix B

Table B-77: Gas Syntax for rlwinm

Instruction Description

rlwinm Rd, Rs, n, mb, me Rd := (Rd ROL n) AND mask(mb..me)
n is a constant specifying the number of bits to rotate in
the source register.
mb and me specify the beginning and ending bit positions
for the mask.
mask(a..b) is a set of 1 bits in positions a..b and 0s
everywhere else.
d and s are register numbers in the range 0..31.

rlwinm. Rd, Rs, n, mb, me Rd := (Rd ROL n) AND mask(mb..me)
CR0 reflects the result of the operation.
n is a constant specifying the number of bits to rotate in
the source register.
mb and me specify the beginning and ending bit positions
for the mask.
mask(a..b) is a set of 1 bits in positions a..b and 0s
everywhere else.
d and s are register numbers in the range 0..31.

Table B-78: CR0 Settings for rlwinm.

Flag Setting

LT Set if the result (signed) is less than 0.

GT Set if the result (signed) is greater than 0.

Zero Set if the result is 0.

SO Unaffected.

B.57  rlwnm, rlwnm.
The rlwnm (rotate left word then AND with mask) instruction requires five
operands—a destination register, a source register, a register holding a
count value, and two immediate operands. This instruction rotates the
source operand to the left by the number of bits specified by count register
operand (the third operand), and then extracts bits mb and me (the second
and third immediate operands) from this result and stores the result into
the destination register (with 0s in bit positions outside the mask range).

Table B-79: Gas Syntax for rlwnm

Instruction Description

rlwnm Rd, Rs, Rc, mb, me Rd := (Rd ROL Rc) AND mask(mb..me)
mb and me specify the beginning and ending bit positions
for the mask.
mask(a..b) is a set of 1 bits in positions a..b and 0s
everywhere else.
d, s, and c are register numbers in the range 0..31.

(continued)

PowerPC Assembly for the HLL Programmer 41

Table B-79: Gas Syntax for rlwnm (continued)

Instruction Description

rlwnm. Rd, Rs, Rc, mb, me Rd := (Rd ROL Rc) AND mask(mb..me)
CR0 reflects the result of the operation.
mb and me specify the beginning and ending bit positions
for the mask.
mask(a.. b) is a set of 1 bits in positions a..b and 0s
everywhere else.
d and s are register numbers in the range 0..31.

Table B-80: CR0 Settings for rlwnm.

Flag Setting

LT Set if the result (signed) is less than 0.

GT Set if the result (signed) is greater than 0.

Zero Set if the result is 0.

SO Unaffected.

B.58  slw, slw.
The slw (shift left word) instruction requires three register operands—a
destination register, a source register, and a register holding a count value.
This instruction shifts the value of the source operand to the left by the
number of bits specified by the count register operand and stores the result
into the destination register. This is an unsigned, or logical, shift left opera-
tion. Zeros are shifted into unoccupied LO bit positions. Bits shifted out of
the HO bit are lost.

Table B-81: Gas Syntax for slw

Instruction Description

slw Rd, Rs, Rc Rd := (Rs SHL Rc)
d, s, and c are register numbers in the range 0..31.

slw. Rd, Rs, Rc Rd := (Rs SHL Rc)
CR0 reflects the result of the operation.
d, s, and c are register numbers in the range 0..31.

Table B-82: CR0 Settings for slw.

Flag Setting

LT Set if the result (signed) is less than 0.

GT Set if the result (signed) is greater than 0.

Zero Set if the result is 0.

SO Unaffected.

42 Appendix B

B.59  sraw, sraw.
The sraw (shift right, arithmetic, word) instruction requires three register
operands—a destination register, a source register, and a register holding
a count value. This instruction shifts the value of the source operand to
the right by the number of bits specified by the count register operand and
stores the result into the destination register. This instruction replicates the
HO (sign) bit into the HO bit position after the shift. Bits shifted out of the
LO bit position are lost.

Table B-83: Gas Syntax for sraw

Instruction Description

sraw Rd, Rs, Rc Rd := (Rs SHR Rc) (signed)
d, s, and c are register numbers in the range 0..31.

sraw. Rd, Rs, Rc Rd := (Rs SHR Rc) (signed)
CR0 reflects the result of the operation.
d, s, and c are register numbers in the range 0..31.

Table B-84: CR0 Settings for sraw.

Flag Setting

LT Set if the result (signed) is less than 0.

GT Set if the result (signed) is greater than 0.

Zero Set if the result is 0.

SO Unaffected.

B.60  srawi, srawi.
This instruction shifts the value of the source operand to the right count
bits and stores the result into the destination register. This instruction
replicates the HO (sign) bit into the HO bit position after the shift. Bits
shifted out of the LO bit position are lost.

Table B-85: Gas Syntax for srawi

Instruction Description

srawi Rd, Rs, constant Rd := (Rs SHR constant) (signed)
constant is the number of bits to shift, in the range 0..31.
d and s are register numbers in the range 0..31.

srawi. Rd, Rs, constant Rd := (Rs SHR constant) (signed)
CR0 reflects the result of the operation.
constant is the number of bits to shift, in the range 0..31.
d and s are register numbers in the range 0..31.

PowerPC Assembly for the HLL Programmer 43

Table B-86: CR0 Settings for srawi.

Flag Setting

LT Set if the result (signed) is less than 0.

GT Set if the result (signed) is greater than 0.

Zero Set if the result is 0.

SO Unaffected.

B.61  srw, srw.
The srw (shift right word) instruction requires three register operands—a
destination register, a source register, and a register holding a count value.
This instruction shifts the value of the source operand to the right by the
number of bits specified by the count register and stores the result into the
destination register. This is an unsigned, or logical, shift right operation. It
shifts 0s into the unoccupied HO bit positions. Bits shifted out of the LO bit
position are lost.

Table B-87: Gas Syntax for srw

Instruction Description

srw Rd, Rs, Rc Rd := (Rs SHL Rc)
d, s, and c are register numbers in the range 0..31.

srw. Rd, Rs, Rc Rd := (Rs SHL Rc)
CR0 reflects the result of the operation.
d, s, and c are register numbers in the range 0..31.

Table B-88: CR0 Settings for srw.

Flag Setting

LT Set if the result (signed) is less than 0.

GT Set if the result (signed) is greater than 0.

Zero Set if the result is 0.

SO Unaffected.

B.62  stb, stbu, stbux, stbx
The stb (store byte) instruction stores the LO byte of a register into memory
at an address specified by the displacement plus register addressing mode.

The stbu (store byte with update) works in a similar manner except
that it also updates the base register with the effective address of the byte
in memory.

The stbx (store byte, indexed) stores the byte held in the LO byte of a
source register into the memory location specified by the register plus regis-
ter indexed addressing mode.

44 Appendix B

The stbux (store byte indexed, with update) is just like stbx except it
also updates the base register with the effective address after moving the
byte to memory.

Table B-89: Gas Syntax for stb

Instruction Description

stb Rs, disp(Rb) mem8[disp + Rb] := Rs
s and b are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem8[disp + Rb] is the byte at the memory address
specified by disp + Rb.
If Rb is R0, then this instruction substitutes the value 0 for R0.

stbu Rs, disp(Rb) mem8[disp + Rb] := Rs
Rb := disp + Rb
s and b are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem8[disp + Rb] is the byte at the memory address
specified by disp + Rb.
If Rb is R0, then this instruction substitutes the value 0 for R0.

stbx Rs, Rb, Rx mem8[Rb + Rx] := Rs
s, b, and x are register numbers in the range 0..31.
If Rb is R0, then this instruction uses 0 as the value for Rs.

stbux Rs, Rb, Rx mem8[Rb + Rx] := Rs
Rb := Rb + Rx
s, b, and x are register numbers in the range 0..31.
If Rb is R0, then this instruction uses 0 as the value for Rb.

B.63  sth, sthu, sthux, sthx
The sth (store halfword) instruction stores the LO 16 bits of a register into
memory at an address specified by the displacement plus register address-
ing mode.

The sthu (store halfword with update) works in a similar manner except
that it also updates the source register with the effective address of the half-
word in memory.

The sthx (store halfword, indexed) stores the halfword held in the LO
16 bits of the source register into the memory location specified by the reg-
ister plus register indexed addressing mode.

The sthux (store halfword indexed, with update) is just like sthx except
it also updates the base register with the effective address after moving the
halfword to memory.

PowerPC Assembly for the HLL Programmer 45

Table B-90: Gas Syntax for sth

Instruction Description

sth Rs, disp(Rb) mem16[disp + Rb] := Rs
s and b are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem16[disp + Rb] is the halfword at the memory address
specified by disp + Rb.
If Rb is R0, then this instruction substitutes the value 0 for R0.

sthu Rs, disp(Rb) mem16[disp + Rb] := Rs
Rb := disp + Rb
s and b are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem16[disp + Rb] is the halfword at the memory address
specified by disp + Rb.
If Rb is R0, then this instruction substitutes the value 0 for R0.

sthx Rs, Rb, Rx mem16[Rb + Rx] := Rs
s, b, and x are register numbers in the range 0..31.
mem16[Rb + Rx] is the halfword at the memory address
specified by Rb + Rx.
If Rb is R0, then this instruction uses 0 as the value for Rb.

sthux Rs, Rs, Rx mem16[Rb + Rx] := Rs
Rb := Rb + Rx
s, b, and x are register numbers in the range 0..31.
mem16[Rb + Rx] is the halfword at the memory address
specified by Rb + Rx.
If Rb is R0, then this instruction uses 0 as the value for Rs.

B.64  stmw
The stmw (store multiple words) instruction writes the values in a group
of registers to a contiguous block of memory. This instruction has two
operands: a starting destination register and a displacement plus register
effective memory address. stmw stores all the register values from the desti-
nation register through R31, starting at the specified memory location. This
instruction is quite useful for saving a batch of scratch-pad registers or for
quickly moving blocks of memory around.

Table B-91: Gas Syntax for stmw

Instruction Description

stmw Rs, disp(Rd) mem32[disp + Rd]... := Rs..R31
d and s are register numbers in the range 0..31, and d
must be less than s.
disp is a 16-bit signed constant.
mem32[disp + Rd]... represents n consecutive 32-bit
words in memory, where n = 32 – s.

46 Appendix B

B.65  stw, stwu, stwux, stwx
The stw (store word) instruction stores a register’s value into memory at an
address specified by the displacement plus register addressing mode.

The stwu (store word with update) works in a similar manner except
that it also updates the base register with the effective address of the word
in memory.

The stwx (store word, indexed) stores the word held in the source regis-
ter into the memory location specified by the register plus register indexed
addressing mode.

The stwux (store word indexed, with update) is just like stwx except it
also updates the base register with the effective address after moving the
halfword to memory.

Table B-92: Gas Syntax for sth

Instruction Description

stw Rs, disp(Rb) mem32[disp + Rb] := Rs
s and b are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem32[disp + Rb] is the word at the memory address
specified by disp + Rb.
If Rb is R0, then this instruction substitutes the value 0 for R0.

stwu Rs, disp(Rb) mem32[disp + Rb] := Rs
Rs := disp + Rs
s and b are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem32[disp + Rb] is the word at the memory address
specified by disp + Rb.
If Rb is R0, then this instruction substitutes the value 0 for R0.

stwx Rs, Rb, Rx mem32[Rb + Rx] := Rs
s, b, and x are register numbers in the range 0..31.
mem32[Rb + Rx] is the word at the memory address
specified by Rb + Rx.
If Rb is R0, then this instruction uses 0 as the value for Rs.

stwux Rs, Rb, Rx mem32[Rb + Rx] := Rs
Rb := Rb + Rx
s, b, and x are register numbers in the range 0..31.
mem32[Rb + Rx] is the word at the memory address
specified by Rb + Rx.
If Rb is R0, then this instruction uses 0 as the value for Rb.

B.66  sub, sub., subo, subo.
The sub (subtract) instruction requires three register operands—a destina-
tion register and two source registers. This instruction computes the dif-
ference of the values in the two source registers and places the result into
the destination register. This instruction is actually a synonym for the subf
instruction (with the register positions swapped); see subf for details.

PowerPC Assembly for the HLL Programmer 47

Table B-93: Gas Syntax for sub

Instruction Description

sub Rd, Rs1, Rs2 Rd := Rs1 - Rs2
d, s1, and s2 are register numbers in the range 0..31.

sub. Rd, Rs1, Rs2 Rd := Rs1 - Rs2
CR0 reflects the result of the difference.
d, s1, and s2 are register numbers in the range 0..31.

subo Rd, Rs1, Rs2 Rd := Rs1 - Rs2
The overflow and summary overflow bits in XER are set if
a signed overflow occurs.
d, s1, and s2 are register numbers in the range 0..31.

subo. Rd, Rs1, Rs2 Rd := Rs1 - Rs2
CR0 reflects the result of the difference.
The overflow and summary overflow bits in XER are set if
a signed overflow occurs.
d, s1, and s2 are register numbers in the range 0..31.

Table B-94: CR0 Settings for sub. and subo.

Flag Setting

LT Set if the difference (signed) is less than 0.

GT Set if the difference (signed) is greater than 0.

Zero Set if the difference is 0.

SO The summary overflow bit from the XER is copied to this field after
computing the sum.

Table B-95: XER Settings for subo and subo.

Flag Setting

OV Set if a signed overflow occurred during the execution of the instruction.

SO Set if the SO bit was previously set, or if a signed overflow occurred
during the execution of the instruction.

CA Unaffected.

B.67  subf, subf., subfo, subfo.
The subf (subtract from) instruction requires three register operands—a
destination register and two source registers. This instruction computes
the difference of the values in the two source registers and places the result
into the destination register. Note that this instruction subtracts the value
of the first source operand from the second source operand. Assemblers
create the sub instruction by reversing the two source operands in the
actual opcode.

48 Appendix B

Table B-96: Gas Syntax for subf

Instruction Description

subf Rd, Rs1, Rs2 Rd := Rs2 - Rs1
d, s1, and s2 are register numbers in the range 0..31.

subf. Rd, Rs1, Rs2 Rd := Rs2 - Rs1
CR0 reflects the result of the difference.
d, s1, and s2 are register numbers in the range 0..31.

subfo Rd, Rs1, Rs2 Rd := Rs2 - Rs1
The overflow and summary overflow bits in XER are set if
a signed overflow occurs.
d, s1, and s2 are register numbers in the range 0..31.

subfo. Rd, Rs1, Rs2 Rd := Rs2 - Rs1
CR0 reflects the result of the difference.
The overflow and summary overflow bits in XER are set if
a signed overflow occurs.
d, s1, and s2 are register numbers in the range 0..31.

Table B-97: CR0 Settings for subf. and subfo.

Flag Setting

LT Set if the difference (signed) is less than 0.

GT Set if the difference (signed) is greater than 0.

Zero Set if the difference is 0.

SO The summary overflow bit from the XER is copied to this field after
computing the sum.

Table B-98: XER Settings for subfo and subfo.

Flag Setting

OV Set if a signed overflow occurred during the execution of the instruction.

SO Set if the SO bit was previously set, or if a signed overflow occurred
during the execution of the instruction.

CA Unaffected.

B.68  subi
The subi (subtract immediate) instruction subtracts a constant from the
contents of a source register and stores the difference into a destination
register. The constant is limited to a signed 16-bit value (which the instruc-
tion sign-extends to 32 bits prior to use). This instruction does not affect
any flags or the overflow bit.

PowerPC Assembly for the HLL Programmer 49

Table B-99: Gas Syntax for subi

Instruction Description

subi Rd, Rs1, constant Rd := Rs1 - constant
d and s1 are register numbers in the range 0..31.
This instruction is a synonym for
addi Rd, Rs, -constant.

B.69  subis
The subis (subtract immediate, shifted) instruction shifts a 16-bit constant
to the left 16 bits, subtracts this from the value in a source register, and
then stores the difference into a destination register.

Table B-100: Gas Syntax for subis

Instruction Description

subis Rd, Rs, constant Rd := Rs - (constant << 16)
d and s are register numbers in the range 0..31.
This instruction is a synonym for
addis Rd, Rs, -constant.

B.70  xor, xor.
The xor instruction requires three register operands—a destination register
and two source registers. This instruction computes the logical (bitwise)
XOR of the two source values and places the result in the destination register.

Table B-101: Gas Syntax for xor

Instruction Description

xor Rd, Rs1, Rs2 Rd := Rs1 XOR Rs2
d, s1, and s2 are register numbers in the range 0..31.

xor. Rd, Rs1, Rs2 Rd := Rs1 XOR Rs2
CR0 reflects the result of the operation.
d, s1, and s2 are register numbers in the range 0..31.

Table B-102: CR0 Settings for xor.

Flag Setting

LT Set if the result (signed) is less than 0.

GT Set if the result (signed) is greater than 0.

Zero Set if the result is 0.

SO Unaffected.

50 Appendix B

B.71  xori
The xori (exclusive-or immediate) instruction requires two register oper-
ands and a 16-bit constant. This instruction logically exclusive-ORs the con-
stant with the value held in the source register, and then places the result in
the destination register.

Table B-103: Gas Syntax for xori

Instruction Description

xoris Rd, Rs, constant Rd := Rs XOR constant
d and s are register numbers in the range 0..31.

B.72  xoris
The xoris (exclusive-or immediate, shifted) instruction requires two regis-
ter operands and a 16-bit constant. This instruction shifts the constant to
the left 16 bits, logically exclusive-ORs this with the value held in the source
register, and then places the result in the destination register.

Table B-104: Gas Syntax for xoris

Instruction Description

xoris Rd, Rs, constant Rd := Rs XOR (constant << 16)
d and s are register numbers in the range 0..31.

B.73  For More Information
Blanchard, Hollis. “PowerPC Assembly.” July 2, 2002. https://ibm.co/2I1uzSm.

IBM Knowledge Center. “Appendix F: PowerPC Instructions.” n.d.
https://ibm.co/2PzVzg2.

Motorola, Inc., and IBM. PowerPC Microprocessor Family: The Programmer’s
Reference Guide. Chicago: Motorola, Inc., 1995. https://www.cebix.net​
/downloads​/bebox/PRG.pdf.

https://www.cebix.net/downloads/bebox/PRG.pdf
https://www.cebix.net/downloads/bebox/PRG.pdf

	Appendix B: PowerPC Assembly for the HLL Programmer
	B.1 Assembly Syntaxes
	B.2 Basic PowerPC Architecture
	B.2.1 General-Purpose Integer Registers
	B.2.2 General-Purpose Floating-Point Registers
	B.2.3 User-Mode-Accessible Special-Purpose Registers
	B.2.3.1 Condition Code Registers
	B.2.3.2 Floating-Point Status and Control Register
	B.2.3.3 XER Register
	B.2.3.4 The LINK Register
	B.2.3.5 The COUNT Register
	B.2.3.6 The Time Base Registers

	B.3 Literal Constants
	B.3.1 Binary Literal Constants
	B.3.2 Decimal Literal Constants
	B.3.3 Hexadecimal Literal Constants
	B.3.4 Character and String Literal Constants
	B.3.5 Floating-Point Literal Constants

	B.4 Manifest (Symbolic) Constants in Assembly Language
	B.5 PowerPC Addressing Modes
	B.5.1 PowerPC Register Access
	B.5.2 The Immediate Addressing Mode
	B.5.3 PowerPC Memory Addressing Modes
	B.5.3.1 Register Plus Displacement Addressing Mode
	B.5.3.2 Register Plus Register (Indexed) Addressing Mode

	B.6 Declaring Data in Assembly Language
	B.7 Specifying Operand Sizes in Assembly Language
	B.8 The Minimal Instruction Set
	B.9 add, add., addo, addo.
	B.10 addi
	B.11 addis
	B.12 and, and.
	B.13 andc, andc.
	B.14 andi
	B.15 andis
	B.16 Branches
	B.16.1 Unconditional Branch (b), Relative
	B.16.2 Unconditional Branch and Link (bl), Relative
	B.16.3 Indirect Branch Instructions (blr and bctr)
	B.16.4 Conditional Branch Instructions
	B.16.5 Indirect Conditional Branches
	B.16.6 Other Branch Forms

	B.17 cmp
	B.18 cmpi
	B.19 cmpl
	B.20 cmpli
	B.21 divw, divw., divwo, divwo.
	B.22 divwu, divwu., divwuo, divwuo.
	B.23 equ, equ.
	B.24 extsb, extsb.
	B.25 extsh, extsh.
	B.26 la
	B.27 lbz, lbzu, lbzux, lbzx
	B.28 lha, lhau, lhax, lhaux
	B.29 lhz, lhzu, lhzx, lhzux
	B.30 li
	B.31 lis
	B.32 lmw
	B.33 lwz, lwzu, lwzx, lwzux
	B.34 mcrf
	B.35 mcrxr
	B.36 mfcr
	B.37 mfctr
	B.38 mflr
	B.39 mr
	B.40 mtcrf
	B.41 mtctr
	B.42 mtlr
	B.43 mtxer
	B.44 mulhw, mulhw.
	B.45 mulhwu, mulhwu.
	B.46 mulli
	B.47 mullw, mullw., mullwo, mullwo.
	B.48 nand, nand.
	B.49 neg, neg., nego, nego.
	B.50 nor, nor.
	B.51 or, or.
	B.52 orc, orc.
	B.53 ori
	B.54 oris
	B.55 rlwimi, rlwimi.
	B.56 rlwinm, rlwinm.
	B.57 rlwnm, rlwnm.
	B.58 slw, slw.
	B.59 sraw, sraw.
	B.60 srawi, srawi.
	B.61 srw, srw.
	B.62 stb, stbu, stbux, stbx
	B.63 sth, sthu, sthux, sthx
	B.64 stmw
	B.65 stw, stwu, stwux, stwx
	B.66 sub, sub., subo, subo.
	B.67 subf, subf., subfo, subfo.
	B.68 subi
	B.69 subis
	B.70 xor, xor.
	B.71 xori
	B.72 xoris
	B.73 For More Information

