
Compilers for the Java language differ
from many contemporary compilers in

that they typically produce a special Java
bytecode (JBC) rather than true machine lan-

guage. An interpreter processes (interprets) this byte-
code at runtime. In many systems, a just-in-time (JIT)
compiler (operating during interpretation) translates the JBC into a
sequence of native machine instructions that do the same work as the inter-
preter, but the JIT translation boosts the JBC’s performance by eliminating
the need to fetch and interpret it at runtime.

To better understand how the Java compiler operates, you need a basic
familiarity with the Java bytecode instruction set. To that end, this appendix:

•	 Describes the basic JBC machine architecture

•	 Provides an overview of JBC assembly language so that you’ll be able to
read the bytecode output produced by the Java compiler

D
J A V A B Y T E C O D E A S S E M B LY F O R

T H E H L L P R O G R A M M E R

2 Appendix D

D.1  Assembly Syntax
Although some people have written Java bytecode assemblers, you don’t
really write JBC assembly language. The Java compiler does not produce
JBC assembly language output (that a bytecode assembler would convert
to object code). JBC is so simple, by design, that the Java compiler emits it
directly without using an assembler. Some people have written JBC assem-
bly by hand, but there’s really no reason for doing so other than for the
experience. Because of runtime interpretation, there are no runtime ben-
efits to writing JBC assembly. Furthermore, the JBC architecture doesn’t
really provide any instructions that let you accomplish tasks in JBC assembly
that couldn’t be done directly in Java.

This book uses the javap Java class file disassembler to disassemble com-
piler output files. For the most part, JBC disassemblies consist of a list of
instructions that each have zero or one operands.

D.2  Basic Java Machine Architecture
The Java virtual machine (JVM) uses a typical p-machine (pseudo-machine)
stack architecture, similar to the UCSD Pascal p-machine from the 1970s
and 1980s. The complete and current documentation for the JVM is avail-
able at the Oracle website (http://docs.oracle.com). Search online for “Java
Virtual Machine Specification,” and you’ll find the latest version of this
document. This appendix discusses the Java SE 10 Edition, most of which
should still apply as newer versions are released.

D.2.1  Java VM Registers
The Java VM reserves a set of registers for each executing thread.
Specifically, there is a Java PC (program counter) register that holds the
address of the currently executing bytecode instruction,1 and a stack
pointer register that points at the current top of stack (TOS).

D.2.2  Java VM Primitive Types and Values
The Java VM supports two types of data: reference types and primitive types.
Reference types, as their name suggests, are pointers to various objects (includ-
ing array, interface, and class objects). Primitive types are the basic numeric
types, the boolean type, and the returnAddress type, as described here:

byte  8-bit signed two’s-complement integers in the range –128 through
+127.

short  16-bit signed two’s-complement integers in the range –32,768
through +32,767.

1. If the system is executing native code, such as that produced by the Java JIT compiler, then
the value held in the Java PC register is meaningless.

http://docs.oracle.dom

Java Bytecode Assembly for the HLL Programmer 3

int  32-bit signed two’s-complement integers in the range
–2,147,483,648 through +2,147,483,647.

long  64-bit signed two’s-complement integers in the range
–9,223,372,036,854,775,808 through +9,223,372,036,854,775,807.

char  16-bit unsigned integers representing Unicode code points in the
Basic Multilingual Plane (BMP).

float  32-bit single-precision floating-point values.

double  64-bit double-precision floating-point values.

boolean  8-bit Boolean values encoding 0 as false and 1 as true.

returnAddress  Typically a pointer holding the address of a Java VM
instruction (bytecode).

D.2.3  Java VM Reference Types
A Java VM reference type is a pointer to a class object, an interface object,
or an array object. Reference objects can also have the special value null,
meaning they’re not pointing at a specific value.

D.2.4  Java Memory Areas
The Java VM defines several special areas of memory that contain specific
data for the threads running under the VM:

Stack  Each Java VM thread has its own stack area.

Heap  The heap is a large (possibly expandable) block of memory. All
threads share the same heap. Dynamic allocation of objects and arrays
occurs on the heap.

Method area  The method area holds the executable bytecodes for all
methods in the Java VM. All threads share the same method area.

Runtime constant pool  The runtime constant pool is a per-class or
per-interface runtime representation of the constant pool in a class. It
holds numeric literal (constant/immediate) values, string constants,
and other entities.

Native method stacks  Native method stacks are blocks of memory
associated with native code running on the underlying CPU (for exam-
ple, when executing pure machine code produced by a JIT translation
of the bytecode, or when linking in code written in a different language
with a Java program).

Frames  A frame is a block of memory (allocated on a Java stack)
to pass parameters, return results, and hold local variables for a
method invocation.

4 Appendix D

D.3  Java VM Addressing Modes
Although the JVM is a zero-address stack machine, several instructions do
include operands as part of the opcode in addition to operands appearing
on the stack. This section discusses the various ways JVM instructions access
memory and constant values.

D.3.1  Immediate and Constant Access
The JVM provides several instructions that push constant values onto the
stack. Table D-1 lists the immediate versions of these instructions.

Table D-1: Array Load and Store Instructions

Instruction Operand Description

bipush byte constant Byte immediate push. Sign-extends a byte
constant (-128..+127) and pushes that value onto
the stack.

sipush short constant Short immediate push. Sign-extends a short
constant (-32768..+32767) and pushes that value
onto the stack.

iconst_m1
iconst_0 iconst_1
iconst_2 iconst_3
iconst_4 iconst_5

(none) Pushes the specified immediate constant
(encoded in the opcode) onto the stack as a
32-bit integer.

lconst_0
lconst_1

(none) Pushes the specified immediate constant
(encoded in the opcode) onto the stack as a
64-bit integer.

fconst_0
fconst_1
fconst_2

(none) Pushes the specified immediate constant
(encoded in the opcode) onto the stack as a
32-bit floating-point value.

dconst_0
dconst_1

(none) Pushes the specified immediate constant
(encoded in the opcode) onto the stack as a
64-bit floating-point value.

aconst_NULL (none) Pushes a null pointer onto the stack.
ldc index Loads a constant (numeric, string, or reference)

onto the stack. The index (0..255) is an index
into a runtime constant table.

ldc_w index Loads a 32-bit constant (numeric, string, or
reference) onto the stack. The index (0..65535) is
an index into a runtime constant table.

ldc2_w index Loads a 64-bit constant (numeric, string, or
reference) onto the stack. The index (0..65535) is
an index into a runtime constant table.

For constants outside the ranges possible with the immediate push
instructions, the JVM provides the ldc, ldc_w, and ldc2_w instructions. These
instructions copy a constant (numeric, string, or reference) from the Java
VM constant pool (in memory) onto the stack.

Java Bytecode Assembly for the HLL Programmer 5

The ldc instruction is a 2-byte instruction consisting of an opcode and
a 1-byte unsigned index value. The index byte is an index into the runtime
constant pool for the current class. This means that the ldc instruction pro-
vides access to, at most, 256 different constants in the constant pool for the
current class. The constant value can be any 32-bit value: an integer, a float,
or a reference to a string, array, or some other object.

Though it is relatively rare, a given class could have more than 256
(literal) constants. In this situation, the Java compiler will use the 3-byte
ldc_w (wide) instruction. The ldc_w instruction consists of a 1-byte opcode
followed by a 2-byte unsigned index. That index provides access to up to
65,536 different constants within the current class. Each class has its own
constant pool, so if a program needs more than 65,536 different constants,
you simply spread them out across multiple classes. However, keep in mind
that the JVM architecture limits you to 65,536 constants within a single
class. Here’s a short Java program that writes a synthetic Java program (to
the standard output, which you can capture using I/O redirection):

public class GenJava {
 /** Main method */
 public static void main(String[] args) {

 System.out.println("public class BigVars { ");
 int i;
 for(i=65538; i < 140000; ++i)
 {
 System.out.println("public static int v" + i + " = " + i + ";");
 }
 System.out.println("}");
 }
}

Running this program from the command line (java GenJava.class
>BigVars.java) produces a sample Java source file that defines more than
65,536 different static constants (along with more than 65,536 different
variables; however, that’s a different issue). Compiling this program with
Java produces the following output:

[iMac-Pro:Build/Products/Debug] rhyde% javac BigVars.java
BigVars.java:2: code too large
public static int v65538 = 65538;
 ^
BigVars.java:1: too many constants
public class BigVars {
 ^
2 errors

Fortunately, the likelihood that you’ll ever see this error outside of a
synthetic program such as BigVars.java is almost nil.

6 Appendix D

D.3.2  Java Static Data Access
Class static data fields appear in a special location in memory accessible
through symbols in the associated class’s constant pool. To access static
data members of a class, Java uses the putstatic and getstatic instructions.
These are 3-byte instructions consisting of an opcode followed by a 16-bit
index into the constant pool. The constant pool entry contains additional
information about the static variable’s location and type. In order to access
a static object, the JVM first uses the index to locate the symbol table infor-
mation in the constant pool, and then the symbol table entry to locate the
actual data to push on the stack (getstatic) or to pop the value on the stack
into (putstatic). This means accessing class static objects is actually more
work than accessing local variables in a method.

Consider the following sample Java program:

public class TestStatic
{
 public static byte b = 0;
 public static short s = 1;
 public static int i = 2;
 public static long l = 3;
 public static float f = 4.0f;
 public static double d = 5.0;
 public static String st = "6";
 public static void main(String[] args)
 {
 byte lb = b;
 short ls = s;
 int li = i;
 long ll = l;
 float lf = f;
 double ld = 5.0;
 String lst = st;
 }
}

Here’s the code the Java compiler emits to initialize the TestStatic static
objects prior to executing the main() method:2

static {};
 Code:
 0: iconst_0
 1: putstatic #2; //Field b:B
 4: iconst_1
 5: putstatic #3; //Field s:S
 8: iconst_2
 9: putstatic #4; //Field i:I
 12: ldc2_w #10; //long 3l
 15: putstatic #5; //Field l:J

2. The javap tool produces this output from a compiled Java class file, as discussed in the sec-
tion “Using the Java Bytecode Disassembler to Analyze Java Output” on page 130.

Java Bytecode Assembly for the HLL Programmer 7

 18: ldc #12; //float 4.0f
 20: putstatic #6; //Field f:F
 23: ldc2_w #7; //double 5.0d
 26: putstatic #13; //Field d:D
 29: ldc #14; //String 6
 31: putstatic #9; //Field st:Ljava/lang/String;
 34: return
}

The instructions at offsets 0 and 1 push 0 onto the stack and then store
that 0 into static variable b. The instructions at offsets 4 and 5 push 1 onto
the stack and store that value into static variable s. And so on. This corre-
sponds to the initializers attached to each of the public static variables in
the TestStatic class.

The Java compiler emits the following code for the main() function:

public static void main(java.lang.String[]);
Code:
 0: getstatic #2; //Field b:B
 3: istore_1
 4: getstatic #3; //Field s:S
 7: istore_2
 8: getstatic #4; //Field i:I
 11: istore_3
 12: getstatic #5; //Field l:J
 15: lstore 4
 17: getstatic #6; //Field f:F
 20: fstore 6
 22: getstatic #7; //Field d:D
 25: dstore 7
 27: getstatic #8; //Field st:Ljava/lang/String;
 30: astore 9
32: return

The getstatic instructions in this code sequence fetch the data for each
of the static variables and push that data onto the stack. The istore, lstore,
fstore, dstore, and astore instructions store the value on the TOS into local
variables in the main() method’s stack frame (into variables corresponding
to lb, ls, li, ll, lf, ld, and lst, respectively).

As noted, accessing static objects is extra work for the JVM interpreter.
If your Java code executes in interpretive mode most of the time (that is,
you’re not using the JIT or some other Java compiler that translates Java
into native machine code), avoid using static objects unless they’re abso-
lutely necessary, as they’re likely to hamper performance.

D.3.3  Java Class Field Data Access
The JVM provides two instructions to access data members of a class: putfield
(which pops the stack and stores that data into an object’s data member) and
getfield (which pushes data from an object’s data member). Both instructions
are 3 bytes long, consisting of a 1-byte opcode and a 2-byte index. The 2-byte

8 Appendix D

index is a 16-bit unsigned integer that provides an index into the class’s con-
stant pool. That entry in the constant pool is a symbol table entry (much
like the index following the getstatic and putstatic opcodes). This provides
type and other descriptor information, including a value that specifies the
offset of the data field within the actual object in memory. However, the
descriptor doesn’t know where the object actually sits in memory (because
there could be many different instances of it).

To resolve this issue, the getfield and putfield instructions (unlike the
getstatic and putstatic instructions) require a reference to the object on
the stack. The putfield instruction also requires the data to store into the
data field on the stack (that is, push the object reference first, then push
the data to store, and finally execute the putfield instruction).

Consider the following example of a Java class:

class Example
{
 public byte b;
 public short s;
 public int i;
 public long l;
 public float f;
 public double d;
 public string st;

 Example()
 {
 b = 0;
 s = 1;
 i = 2;
 l = 3;
 f = 4.0f;
 d = 5.0;
 st = "6";
 }
}

Here’s the JBC that the compiler emits for the Example constructor:

Example();
 Code:
 0: aload_0
 1: invokespecial #1; //Method java/lang/Object."<init>":()V
 4: aload_0
 5: iconst_0
 6: putfield #2; //Field b:B
 9: aload_0
 10: iconst_1
 11: putfield #3; //Field s:S
 14: aload_0
 15: iconst_2
 16: putfield #4; //Field i:I
 19: aload_0

Java Bytecode Assembly for the HLL Programmer 9

 20: ldc2_w #5; //long 3l
 23: putfield #7; //Field l:J
 26: aload_0
 27: ldc #8; //float 4.0f
 29: putfield #9; //Field f:F
 32: aload_0
 33: ldc2_w #10; //double 5.0d
 36: putfield #12; //Field d:D
 39: aload_0
 40: ldc #13; //String 6
 42: putfield #14; //Field st:Ljava/lang/String;
 45: return
}

The aload_0 instruction (discussed a little later) at offset 4 loads the
this pointer onto the stack. The putfield instruction uses this pointer to
the newly allocated Example object (created immediately prior to calling this
class constructor) to access the object’s data members.

The instructions at offsets 5 and 6 push the value 0 onto the stack
(iconst_0), and then store the 0 into this.b using the putfield instruction.
The putfield operand (#2 in this case) is the index into the constant pool
that holds the symbol table entry for field b; the javap application is nice
enough to print this symbol table information for us during disassembly.
The instructions at offset 9/10/11, 14/15/16, 19/20/23, 26/27/29, and
32/33/36 store the appropriate constant values into the s, i, l, f, d, and st
data members, respectively.

Here’s the JVM bytecode for the main function in this example:

public static void main(java.lang.String[]);
 Code:
 0: new #2; //class Example
 3: dup
 4: invokespecial #3; //Method Example."<init>":()V
 7: astore_1
 8: aload_1
 9: getfield #4; //Field Example.b:B
 12: istore_2
 13: aload_1
 14: getfield #5; //Field Example.s:S
 17: istore_3
 18: aload_1
 19: getfield #6; //Field Example.i:I
 22: istore 4
 24: aload_1
 25: getfield #7; //Field Example.l:J
 28: lstore 5
 30: aload_1
 31: getfield #8; //Field Example.f:F
 34: fstore 7
 36: aload_1
 37: getfield #9; //Field Example.d:D
 40: dstore 8
 42: aload_1

10 Appendix D

 43: getfield #10; //Field Example.st:Ljava/lang/String;
 46: astore 10
 48: return

}

The code sequence is similar to the constructor given earlier. The main
difference is that this code stores the results into local variables (using
istore_<i>, lstore, fstore, dstore, and astore instructions). For example,
the instruction at offset 8 loads a reference to x onto the stack (using the
aload_1 instruction), gets the data from x.b using the getfield instruction
at offset 9, and then stores the value (now on the stack) into the local vari-
able lb using the istore_2 instruction. It takes the combination of the ref-
erence to x (pushed on the stack by the aload_1 instruction), plus getfield’s
#4 operand, to compute the actual destination address where getfield
retrieves the value of x.b.

D.3.4  Accessing Local Values in the Current Stack Frame
The JVM dedicates a fair percentage of the instruction set to accessing local
variables in a method’s current stack frame.

The stack frame is an array of 32-bit (double word) values holding
parameter and local variable values during a function invocation. (Double
and long values consume two double words in the stack frame.) The JVM
references values in the stack frame by their index into this array of 32-bit
values. During compilation, the Java compiler associates the first element of
the stack frame (index 0) with the first parameter (if it exists), the second
element of the stack frame (index 1) with the second parameter, and so on.
After consuming all the parameters, the Java compiler associates the next
batch of indexes with the local variables (typically as it encounters them dur-
ing compilation). (Double and long variables and parameters each consume
two indexes.)

The JVM provides separate load instructions for integer variables (iload),
long variables (lload), float variables (fload), double variables (dload), and ref-
erence objects (array, objects, and strings—aload), along with a complemen-
tary form of the store instruction for each: istore, lstore, fstore, dstore, and
astore. The base form of these instructions is 2 bytes long, consisting of an
opcode and an unsigned 8-bit index into the current stack frame. As very
few methods have more than 256 local variables and parameters, the 2-byte
form usually suffices. However, there is a special 4-byte form of these instruc-
tions consisting of a special wide prefix, the opcode, and a 2-byte index that
allows up to 65,536 different slots in the stack frame. If you have more than
65,536 different variables in a single function, perhaps you should rethink
how you’re coding your application!3

3. Note that arrays, objects, and strings are reference objects and only consume only one slot
in the stack frame; they do not consume one slot for each array element, character in the
string, or field in the object. The stack frame slot for these objects contains a reference to the
actual object data that is on the heap, not in the stack frame.

Java Bytecode Assembly for the HLL Programmer 11

The JVM provides special 1-byte forms of these instructions that pro-
vide access to the first four slots in the stack frame. These instructions are
xload_0, xload_1, xload_2, xload_3, xstore_0, xstore_1, xstore_2, and xstore_3,
where x is one of {i, l, f, d, a}. Because the parameters appear first in the
stack frame, this provides short (and quick) access to the first four param-
eters.4 If there are fewer than four parameters, these instructions provide
short (and quick) access to the first couple of local variables.

The Java compiler always allocates (at least) 32 bits for local variables
even if they are byte, char, boolean, short, or any other types that require
fewer than 32 bits. Java doesn’t bother trying to save a few bytes in memory
when allocating smaller objects. Even if you allocate hundreds of these
small variables, it won’t have a meaningful impact on the memory usage
in modern machines.

Of course, the situation is different if you have an array of bytes (or
other small data type). As you’ll soon see, Java provides special instructions
to access elements of an array, which avoids wasted memory when you’re
dealing with potentially large arrays.

D.3.5  Accessing Array Data in Java
The JVM provides eight instructions that load an element of an array onto
the stack and a corresponding set of eight instructions that pop a value
from the stack and store it to an array element. Table D-2 lists the instruc-
tions and their respective data types.

Table D-2: Array Load and Store Instructions

Instruction Stack operands Description

aaload arrayRef, index arrayRef is a pointer to an array of
reference objects. index is an unsigned
index into that array. This instruction
pops the two operands off the stack and
pushes the array reference element at
arrayRef[index] back onto the stack.

aastore arrayRef, index,
reference

arrayRef is a pointer to an array of
reference objects. index is an unsigned
index into that array. reference is a
reference (pointer) value. This instruction
pops reference off the stack and then
pops the next two operands and stores the
reference value into the array element at
arrayRef[index].

(continued)

4. Keep in mind that double and long parameters consume two slots; therefore, passing double
or long parameters reduces the number of available slots for parameters or local variables.

12 Appendix D

Table D-2: Array Load and Store Instructions (continued)

Instruction Stack operands Description

baload arrayRef, index arrayRef is a pointer to an array of 8-bit
values (such as byte or boolean). index
is an unsigned index into that array. This
instruction pops the two operands off
the stack and pushes the byte element at
arrayRef[index] back onto the stack. This
instruction sign-extends the 8-bit array
element to 32 bits prior to pushing the
value onto the stack.

bastore arrayRef, index,
byteValue

arrayRef is a pointer to an array of 8-bit
objects. index is an unsigned index into
that array. byteValue is a 32-bit value. This
instruction pops byteValue off the stack,
pops the next two operands off the stack,
and then stores the LO 8 bits of byteValue
into the array element at arrayRef[index].

caload arrayRef, index (TOS) arrayRef is a pointer to an array of (16-bit
Unicode) characters. index is an unsigned
index into that array. This instruction pops
the two operands off the stack and pushes
the char element at arrayRef[index]
back onto the stack. This instruction zero-
extends the 16-bit char value to 32 bits
prior to pushing it onto the stack.

castore arrayRef, index,
charValue (TOS)

arrayRef is a pointer to an array of 16-bit
character objects. index is an unsigned
index into that array. charValue is a 32-bit
value (presumably containing a 16-bit
Unicode character code in its LO 16 bits).
This instruction pops the charValue value
off the stack, pops the next two operands
off the stack, and then stores the LO 16
bits of charValue into the array element at
arrayRef[index].

daload arrayRef, index (TOS) arrayRef is a pointer to an array of
double-precision (64-bit) floating-point
values. index is an unsigned index into
that array. This instruction pops the two
operands off the stack and pushes the
double element at arrayRef[index] back
onto the stack. This instruction pushes 64
bits onto the stack.

dastore arrayRef, index,
doubleValue (64 bits on
TOS)

arrayRef is a pointer to an array of 64-bit
double objects. index is an unsigned
index into that array. doubleValue is a
64-bit double-precision floating-point
value (occupying two 32-bit entries on
the stack). This instruction pops the 64-bit
doubleValue off the stack, pops the next
two operands off the stack, and then
stores doubleValue into the array element
at arrayRef[index].

(continued)

Java Bytecode Assembly for the HLL Programmer 13

Table D-2: Array Load and Store Instructions (continued)

Instruction Stack operands Description

faload arrayRef, index (TOS) arrayRef is a pointer to an array of single-
precision (32-bit) floating-point values.
index is an unsigned index into that array.
This instruction pops the two operands off
the stack and pushes the float element at
arrayRef[index] back onto the stack.

fastore arrayRef, index,
floatValue (TOS)

arrayRef is a pointer to an array of 32-bit
float objects. index is an unsigned index
into that array. floatValue is a 32-bit
value. This instruction pops the floatValue
off the stack, pops the next two operands
off the stack, and then stores floatValue
into the array element at arrayRef[index].

iaload arrayRef, index (TOS) arrayRef is a pointer to an int array.
index is an unsigned index into that array.
This instruction pops the two operands off
the stack and pushes the int element at
arrayRef[index] back onto the stack.

iastore arrayRef, index,
intValue (TOS)

arrayRef is a pointer to an array of 32-bit
int objects. index is an unsigned index
into that array. intValue is a 32-bit value.
This instruction pops intValue off the
stack, pops the next two operands off the
stack, and then stores intValue into the
array element at arrayRef[index].

laload arrayRef, index (TOS) arrayRef is a pointer to an array of (64-
bit) long int values. index is an unsigned
index into that array. This instruction pops
the two operands off the stack and pushes
the long int element at arrayRef[index]
back onto the stack. This instruction
pushes 64 bits onto the stack.

lastore arrayRef, index,
longIntValue (64 bits
on TOS)

arrayRef is a pointer to an array of 64-bit
long int objects. index is an unsigned
index into that array. longIntValue is a
64-bit value (occupying two 32-bit entries
on the stack). This instruction pops the
64-bit longIntValue off the stack, pops
the next two operands off the stack, and
then stores the longIntValue value into the
array element at arrayRef[index].

saload arrayRef, index (TOS) arrayRef is a pointer to a (16-bit) short
array. index is an unsigned index into
that array. This instruction pops the two
operands off the stack and pushes the
16-bit short int element at arrayRef[index]
back onto the stack. This instruction sign-
extends the short int to 32 bits while
pushing the value onto the stack.

(continued)

14 Appendix D

Table D-2: Array Load and Store Instructions (continued)

Instruction Stack operands Description

castore arrayRef, index,
shortValue (TOS)

arrayRef is a pointer to an array of 16-bit
short int objects. index is an unsigned
index into that array. shortValue is a
32-bit value (that holds a short integer in
its LO 16 bits). This instruction pops the
32-bit shortValue off the stack, pops the
next two operands off the stack, and then
stores the LO 16 bits of shortValue into the
array element at arrayRef[index].

D.4  Java VM Conditional Control Flow
The JVM provides a set of if instructions to compare a pair of 32-bit signed
values on the stack and transfer control based on the result of the compari-
son. These instructions are 3 bytes long, consisting of a 1-byte opcode and a
2-byte signed displacement value. The instructions are:

if_icmpeq  Compares TOS to NOS (next on stack) and transfers control
if TOS == NOS.

if_icmpne  Compares TOS with NOS and transfers control if TOS != NOS.

if_icmplt  Compares TOS with NOS and transfers control if NOS < TOS.

if_icmple  Compares TOS with NOS and transfers control if NOS ≤ TOS.

if_icmpgt  Compares TOS with NOS and transfers control if NOS > TOS.

if_icmpge  Compares TOS with NOS and transfers control if NOS ≥ TOS.

As the JVM converts bytes, shorts, and chars to 32 bits when pushing
their values onto the stack, the JVM also uses these if_icmpxx instructions
for those data types.

If the result of the comparison is true, these instructions will sign-extend
the 16-bit displacement immediately following the opcode to 32 bits and add
this value to the current JVM program counter value. The JVM will then
fetch the next opcode from the new address held in the program counter
register. If the result of the comparison is false, execution will continue with
the opcode immediately following the third byte of these instructions.

To compare references (pointers), the JVM provides two special instruc-
tions, if_acmpeq and if_acmpne. These two instructions are also 3 bytes long
(1-byte opcode and 2-byte displacement) and transfer control if the two
reference values on TOS and NOS are equal (if_acmpeq) or not equal (if_
acmpne). The concept of less than or greater than doesn’t really apply to ref-
erences, so the JVM does not provide any tests other than for (in)equality.

To compare long int, float, and double types, you first use a comparison
instruction to compare the two values on the stack. The comparison instruc-
tions pop the two values on the stack and push the value –1 if NOS < TOS, 0 if

Java Bytecode Assembly for the HLL Programmer 15

NOS == TOS, or 1 if NOS > TOS. Then you use one of the following (3-byte)
if instructions to transfer control based on the result on the TOS:

ifeq  Pops the value on TOS and transfers control if the value is
equal to 0.

ifne  Pops the value on TOS and transfers control if the value is not
equal to 0.

iflt  Pops the value on TOS and transfers control if the value is less
than 0.

ifle  Pops the value on TOS and transfers control if the value is less
than or equal to 0.

ifgt  Pops the value on TOS and transfers control if the value is greater
than 0.

ifge  Pops the value on TOS and transfers control if the value is greater
than or equal to 0.

The lcmp instruction pops two 64-bit long values off the stack and pushes
–1, 0, or +1 based on the comparison of NOS to TOS (greater than, equal to,
or less than, respectively).

Because float and double computations can produce illegal results (NaN,
or “not a number”), there are actually two separate float and double com-
parisons: fcmpl/fcmpg and dcmpl/dcmpg. These instructions compare the float
or double values on TOS and NOS and leave –1, 0, or +1 on the stack when-
ever the floating-point values are legitimate. However, if either operand on
the stack is NaN prior to the execution of these instructions, fcmpl and dcmpl
will leave –1 on the stack, while fcmpg and dcmpg will leave +1.

D.5  The Java VM Instruction Set
Unlike the other (real) machines, such as the ARM, PowerPC, and 80x86,
the Java VM doesn’t really have a minimal instruction set. It’s designed spe-
cifically for use by the Java language, so it’s worthwhile to go over the entire
instruction set.

Table D-3: Java VM Instructions

Instruction Stack operands Description

aaload arrayRef, index arrayRef is a pointer to an array of reference objects.
index is an unsigned index into that array. This instruction
replaces the items on the stack with the specified
reference array element.

aastore arrayRef, index, refValue arrayRef is a pointer to an array of reference values. index
is an unsigned index into that array. refValue is a reference
value. This instruction pops the operands off the stack and
stores the refValue into the specified array element.

aconst_null This instruction pushes null onto the stack.

(continued)

16 Appendix D

Table D-3: Java VM Instructions (continued)

Instruction Stack operands Description

{wide}
aload index

arrayRef, index,
shortValue (TOS)

index is an unsigned byte (immediately following the
aload opcode in memory) that provides an offset into the
current stack frame. The local variable at that offset must
contain an object reference. This instruction pushes that
reference onto the stack. If the optional {wide} instruction
prefix occurs immediately before aload index, then index
is an unsigned 16-bit integer offset.

aload_0
aload_1
aload_2
aload_3

Special single-byte versions of aload index that encode
offsets 0, 1, 2, or 3 into the instruction opcode.

anewarray index16 count index is a 2-byte value following the anewarray opcode
(the HO byte immediately follows the anewarray opcode,
while the LO byte follows the HO byte in the instruction
stream). This is an offset into the constant pool holding
a symbolic reference to a class, array, or interface type.
The count operand on the stack is an unsigned integer
specifying the number of elements of the array to create.
This instruction allocates storage for the array and leaves
an array reference sitting on the TOS.

areturn objRef objRef is an object reference that is compatible with the
return type of the current method/function. The system
pops this reference off the stack, destroys the activation
record of the current method, pushes the objRef onto the
stack frame of the caller, and returns control to the caller.

arrayLength arrayRef Pops the reference to an array and replaces it with the
length (in elements) of that array.

{wide}
astore index

objRef index is an unsigned byte (immediately following the
astore opcode in memory) that provides an offset into
the current stack frame. The local variable at that offset
must contain an object reference. This instruction stores
the object reference on the stack to the local variable
at the specified offset. If the optional {wide} instruction
prefix occurs immediately before astore index, then
index is an unsigned 16-bit integer offset.

astore_0
astore_1
astore_2
astore_3

objRef Special single-byte versions of astore index that encode
offsets 0, 1, 2, or 3 into the instruction opcode.

athrow objRef Throws an exception. Value on TOS must be an exception
(sub)class object reference. Note that this instruction does
not remove the objRef from the TOS.

baload arrayRef, index arrayRef is a pointer to an array of 8-bit values (such
as byte or boolean). index is an unsigned index into that
array. This instruction pops the two operands off the
stack and pushes the byte element at arrayRef[index]
back onto the stack. This instruction sign-extends the 8-bit
array element to 32 bits prior to pushing the value onto
the stack.

(continued)

Java Bytecode Assembly for the HLL Programmer 17

Table D-3: Java VM Instructions (continued)

Instruction Stack operands Description

bastore arrayRef, index,
byteValue

arrayRef is a pointer to an array of 8-bit objects. index
is an unsigned index into that array. byteValue is a 32-bit
value. This instruction pops byteValue off the stack, pops
the next two operands off the stack, and then stores
the LO 8 bits of byteValue into the array element at
arrayRef[index].

bipush sbyte sbyte is a signed 8-bit value (-128..+127). The bipush
instruction sign-extends this to an int value and pushes it
onto the stack.

caload arrayRef, index (TOS) arrayRef is a pointer to an array of (16-bit Unicode)
characters. index is an unsigned index into that array.
This instruction pops the two operands off the stack and
pushes the char element at arrayRef[index] back onto
the stack. This instruction zero-extends the 16-bit char
value to 32 bits prior to pushing it onto the stack.

castore arrayRef, index,
charValue (TOS)

arrayRef is a pointer to an array of 16-bit character
objects. index is an unsigned index into that array.
charValue is a 32-bit value (presumably containing a
16-bit Unicode character code in its LO 16 bits). This
instruction pops the charValue value off the stack, pops
the next two operands off the stack, and then stores
the LO 16 bits of charValue into the array element at
arrayRef[index].

checkcast index16 objRef index is a 2-byte value following the checkcast opcode
(the HO byte immediately follows the checkcast opcode,
while the LO byte follows the HO byte in the instruction
stream). This is an offset into the constant pool holding
a symbolic reference to a class, array, or interface type.
The checkcast instruction verifies that objRef is of the type
specified by index16. If so, the stack is left unchanged;
otherwise, this instruction throws an exception.

d2f doubleValue The double-precision floating-point value on TOS is
converted to a single-precision floating-point value.

d2i doubleValue The double-precision floating-point value on TOS is
converted to an integer value.

d2l doubleValue The double-precision floating-point value on TOS is
converted to a long (64-bit) integer value.

dadd doubleValue, doubleValue This instruction pops the two double-precision values off
the TOS, adds them, and pushes the double-precision
sum back onto the TOS.

daload arrayRef, index (TOS) arrayRef is a pointer to an array of double-precision (64-
bit) floating-point values. index is an unsigned index into
that array. This instruction pops the two operands off the
stack and pushes the double element at arrayRef[index]
back onto the stack. This instruction pushes 64 bits onto
the stack.

(continued)

18 Appendix D

Table D-3: Java VM Instructions (continued)

Instruction Stack operands Description

dastore arrayRef, index,
doubleValue (64 bits
on TOS)

arrayRef is a pointer to an array of 64-bit double objects.
index is an unsigned index into that array. doubleValue is
a 64-bit double-precision floating-point value (occupying
two 32-bit entries on the stack). This instruction pops
the 64-bit doubleValue off the stack, pops the next two
operands off the stack, and then stores doubleValue into
the array element at arrayRef[index].

dcmpg doubleValue, doubleValue This instruction compares the two double-precision values
on TOS, NOS. It pushes true if NOS > TOS, and false
otherwise (or if either or both operands are NaN).

dcmpl doubleValue, doubleValue This instruction compares the two double-precision values
on TOS, NOS. It pushes true if NOS < TOS, and false
otherwise (or if either or both operands are NaN).

dconst_0
dconst_1

Pushes the double-precision constant value 0.0 or 1.0
onto the TOS.

ddiv doubleValue, doubleValue This instruction divides NOS by TOS and pushes the
double-precision quotient back onto the TOS.

{wide}
dload index

index is an unsigned byte (immediately following the
dload opcode in memory) that provides an offset into the
current stack frame. The local variable at that offset and
offset + 1 must contain a double-precision value. This
instruction pushes that value onto the stack. If the optional
{wide} instruction prefix occurs immediately before dload
index, then index is an unsigned 16-bit integer offset.

dload_0
dload_1
dload_2
dload_3

Special single-byte versions of dload index that encode
offsets 0, 1, 2, or 3 into the instruction opcode.

dmul doubleValue, doubleValue This instruction multiplies NOS by TOS and pushes the
double-precision product back onto the TOS.

dneg doubleValue This instruction negates the value on TOS.
drem doubleValue, doubleValue This instruction divides NOS by TOS and pushes the

double-precision remainder back onto the TOS.
dreturn doubleValue doubleValue is a double-precision floating-point value.

The current method/function must return a double result.
The system pops this value off the stack, destroys the
activation record of the current method, pushes the
doubleValue onto the stack frame of the caller, and
returns control to the caller.

{wide}
dstore index

doubleValue index is an unsigned byte (immediately following the
astore opcode in memory) that provides an offset into
the current stack frame. The local variable at that offset
(and offset + 1) must contain a double value. This
instruction stores the double value on TOS to the local
variable at the specified offset (and offset + 1). If the
optional {wide} instruction prefix occurs immediately
before dstore index, then index is an unsigned 16-bit
integer offset.

(continued)

Java Bytecode Assembly for the HLL Programmer 19

Table D-3: Java VM Instructions (continued)

Instruction Stack operands Description

dstore_0
dstore_1
dstore_2
dstore_3

objRef Special single-byte versions of dstore index that encode
offsets 0, 1, 2, or 3 into the instruction opcode.

dsub doubleValue, doubleValue This instruction subtracts TOS from NOS and pushes the
double-precision difference back onto the TOS.

dup value The dup instruction duplicates the value on the TOS.
dup_x1 value1, value2 This instruction duplicates the value on TOS and pushes

the duplicate value two entries down on the stack. That
is, after dup_x1 execution, the stack will contain value1,
value2, value1.

dup_x2 value164, value264
or
value132, value232,
value332

Depending on the type of the operands on the TOS, this
instruction duplicates the value on TOS and inserts it two
or three entries down the stack. The difference has to do
with whether the TOS is a long/double (that is, 64 bits) or
some other data type (32 bits).

dup2 value132, value232
or
value64

Duplicates 64 bits on the TOS. If there are two 32-bit
items on TOS, this instruction duplicates both of them; if
there is a 64-bit value on TOS, this instruction duplicates
only the single 64-bit item on TOS.

dup2_x1 value132, value232,
value332
or
value164, value232

Duplicates 64 bits on the TOS (a single double/long value
or two 32-bit items) and pushes the result 32 bits below.

dup2_x2 Duplicates 64 bits on the TOS (a single double/long
value or two 32-bit items) and pushes the result below
(see the Java VM manual for complete details).

f2d floatValue Converts 32-bit single-precision value on TOS to a double.
f2i floatValue Converts 32-bit single-precision value on TOS to an int.
f2l floatValue Converts 32-bit single-precision value on TOS to a

(64‑bit) long.
fadd floatValue, floatValue Computes single-precision sum of NOS + TOS and

leaves single-precision sum on TOS.
faload arrayRef, index (TOS) arrayRef is a pointer to an array of single-precision (32-

bit) floating-point values. index is an unsigned index into
that array. This instruction pops the two operands off the
stack and pushes the float element at arrayRef[index]
back onto the stack.

fastore arrayRef, index,
floatValue (TOS)

arrayRef is a pointer to an array of 32-bit float objects.
index is an unsigned index into that array. floatValue
is a 32-bit value. This instruction pops the floatValue
off the stack, pops the next two operands off the stack,
and then stores floatValue into the array element at
arrayRef[index].

fcmpg singleValue, singleValue This instruction compares the two single-precision values
on TOS, NOS. It pushes true if NOS > TOS, and false
otherwise (or if either or both operands are NaN).

(continued)

20 Appendix D

Table D-3: Java VM Instructions (continued)

Instruction Stack operands Description

fcmpl singleValue, singleValue This instruction compares the two single-precision values
on TOS, NOS. It pushes true if NOS < TOS, and false
otherwise (or if either or both operands are NaN).

fconst_0
fconst_1
fconst_2

Pushes the single-precision constant value 0.0, 1.0, or 2.0
onto the TOS.

fdiv singleValue, singleValue This instruction divides NOS by TOS and pushes the
single-precision quotient back onto the TOS.

{wide}
fload index

index is an unsigned byte (immediately following the
fload opcode in memory) that provides an offset into the
current stack frame. The local variable at that offset must
contain a single-precision value. This instruction pushes
that value onto the stack. If the optional {wide} instruction
prefix occurs immediately before fload index, then index
is an unsigned 16-bit integer offset.

fload_0
fload_1
fload_2
fload_3

Special single-byte versions of fload index that encode
offsets 0, 1, 2, or 3 into the instruction opcode.

fmul singleValue, singleValue This instruction multiplies NOS by TOS and pushes the
single-precision product back onto the TOS.

fneg singleValue This instruction negates the value on TOS.
frem singleValue, singleValue This instruction divides NOS by TOS and pushes the

single-precision remainder back onto the TOS.
freturn singleValue singleValue is a single-precision floating-point value.

The current method/function must return a float result.
The system pops this value off the stack, destroys the
activation record of the current method, pushes the
singleValue onto the stack frame of the caller, and
returns control to the caller.

{wide}
fstore index

singleValue index is an unsigned byte (immediately following the
fstore opcode in memory) that provides an offset into the
current stack frame. The local variable at that offset must
contain a float value. This instruction stores the float value
on TOS to the local variable at the specified offset. If
the optional {wide} instruction prefix occurs immediately
before fstore index, then index is an unsigned 16-bit
integer offset.

fstore_0
fstore_1
fstore_2
fstore_3

singleValue Special single-byte versions of fstore index that encode
offsets 0, 1, 2, or 3 into the instruction opcode.

fsub singleValue, singleValue This instruction subtracts TOS from NOS and pushes the
single-precision difference back onto the TOS.

(continued)

Java Bytecode Assembly for the HLL Programmer 21

Table D-3: Java VM Instructions (continued)

Instruction Stack operands Description

getfield index16 objRef index is a 2-byte value following the getfield opcode
(the HO byte immediately follows the opcode, while the
LO byte follows the HO byte in the instruction stream).
This is an offset into the constant pool holding a symbolic
reference to a field. The getfield instruction replaces
objRef by the value of the specified field.

getstatic index16 index is a 2-byte value following the getstatic opcode
(the HO byte immediately follows the getstatic opcode,
while the LO byte follows the HO byte in the instruction
stream). This is an offset into the constant pool holding
a symbolic reference to a static field. The getfield
instruction pushes the value of the specified static field
onto TOS.

goto index16 index is a 2-byte signed integer value following the goto
opcode (the HO byte immediately follows the goto opcode,
while the LO byte follows the HO byte in the instruction
stream). This transfers control to the bytecode that is located
at the specified offset from the current instruction.

goto_w index32 index is a 4-byte signed integer value following the goto_2
opcode (the HO byte immediately follows the opcode,
and the remaining bytes follow, in order, down to the LO
byte). This transfers control to the bytecode that is located
at the specified offset from the current instruction.

i2b intValue The integer value on TOS is truncated to 8 bits; the result
is then sign-extended to 32 bits and pushed back onto
the stack.

i2c intValue The integer value on TOS is truncated to 8 bits; the result
is then zero-extended to 32 bits and pushed back onto
the stack.

i2d intValue The integer value on TOS is converted to a double, and
the result is pushed back onto the stack.

i2f intValue The integer value on TOS is converted to a float, and
the result is pushed back onto the stack.

i2l intValue The integer value on TOS is sign-extended to 64 bits and
pushed back onto the stack.

i2s intValue The integer value on TOS is truncated to 16 bits; the
result is then sign-extended to 32 bits and pushed back
onto the stack.

iadd intValue, intValue This instruction computes the sum of NOS + TOS, leaving
the sum on TOS.

iaload arrayRef, index (TOS) arrayRef is a pointer to an int array. index is an
unsigned index into that array. This instruction pops the
two operands off the stack and pushes the int element at
arrayRef[index] back onto the stack.

iand intValue, intValue This instruction computes the bitwise logical AND of
NOS + TOS, leaving the result on TOS.

(continued)

22 Appendix D

Table D-3: Java VM Instructions (continued)

Instruction Stack operands Description

iastore arrayRef, index, intValue arrayRef is a pointer to an array of 32-bit int objects.
index is an unsigned index into that array. intValue is
a 32-bit value. This instruction pops the intValue off the
stack, pops the next two operands off the stack, and then
stores intValue into the array element at arrayRef[index].

iconst_m1
iconst_0
iconst_1
iconst_2
iconst_3
iconst_4
iconst_5

These instructions push the 32-bit integer constant –1, 0,
1, 2, 3, 4, or 5 onto the TOS.

idiv intValue, intValue This instruction divides NOS by TOS and pushes the
integer quotient back onto the TOS.

ifacmpeq offset16 objRef, objRef If NOS is equal to TOS, then transfer control to the
location specified by offset16. offset16 is a signed
16-bit offset specifying a displacement from the
current instruction.

ifacmpne offset16 objRef, objRef If NOS is not equal to TOS, then transfer control to
the location specified by offset16. offset16 is a signed
16-bit offset specifying a displacement from the
current instruction.

ificmpeq offset16
ificmpne offset16
ificmplt offset16
ificmple offset16
ificmpgt offset16
ificmpge offset16

intValue, intValue Compares integer value NOS to TOS, then transfers
control to the location specified by offset16 if the
particular condition is true. offset16 is a signed
16-bit offset specifying a displacement from the
current instruction.

ifeq offset16
ifne offset16
iflt offset16
ifle offset16
ifgt offset16
ifge offset16

intValue Compares 32-bit int on TOS to 0, then transfers control
to the location specified by offset16 if the particular
condition is true. offset16 is a signed 16-bit offset
specifying a displacement from the current instruction.

ifnonnull offset16 Compares TOS to null, then transfers control to the
location specified by offset16 if not equal. offset16 is a
signed 16-bit offset specifying a displacement from the
current instruction.

ifnull offset16 Compares TOS to null, then transfers control to the
location specified by offset16 if equal. offset16 is a
signed 16-bit offset specifying a displacement from the
current instruction.

{wide}
iinc index, const

index is an unsigned byte (immediately following the iinc
opcode in memory) that provides an offset into the current
stack frame. The local variable at that offset must contain
an integer value. const is a signed 8-bit integer constant.
The iinc instruction adds the constant to the local variable
specified by index. If the {wide} prefix is present, then
index is a 16-bit index into the local stack frame.

(continued)

Java Bytecode Assembly for the HLL Programmer 23

Table D-3: Java VM Instructions (continued)

Instruction Stack operands Description

{wide}
iload index

index is an unsigned byte (immediately following the
iload opcode in memory) that provides an offset into
the current stack frame. The local variable at that offset
must contain an integer value. This instruction pushes that
value onto the stack. If the optional {wide} instruction
prefix occurs immediately before iload index, then index
is an unsigned 16-bit integer offset.

iload_0
iload_1
iload_2
iload_3

Special single-byte versions of iload index that encode
offsets 0, 1, 2, or 3 into the instruction opcode.

imul intValue, intValue This instruction multiplies NOS by TOS and pushes the
integer product back onto the TOS.

ineg intValue This instruction negates the integer value on TOS.

instanceof
indext16

objRef indext16 is a 2-byte value following the instanceof
opcode (the HO byte immediately follows the instanceof
opcode, while the LO byte follows the HO byte in the
instruction stream). This is an offset into the constant
pool holding a symbolic reference to a class, array, or
interface type. The instanceof instruction pushes true (1)
or false (0) on the stack if the objRef value is an instance
of the class specified by indext16.

invokedynamic
index16

arg1, arg2, . . . index16 is an unsigned integer specifying an entry into
the constant pool specifying the method to invoke. The
runtime constant pool entry specifies the name (signature)
for the method and the class it is associated with. The
Java VM uses this instruction to invoke lambda methods
(unnamed function blocks) that don’t have a specific
runtime object instance associated with them.

invokeinterface
index16, count

objRef, arg1, arg2, . . . The index16 operand provides a 16-bit index into the
constant pool for the interface type and the method
within that type. The count operand specifies the number
of arguments passed to the method. This instruction pops
the arguments from the stack, creates a new activation
record for the function using the popped arguments, and
then invokes the specified method associated with the
the objRef.

invokespecial
index16

objRef, arg1, arg2, . . . The index16 operand provides a 16-bit index into the
symbolic constant pool for the method to invoke. The
Java VM uses this instruction to call superclass (ancestor)
methods of the object’s current class.

invokestatic
index16

arg1, arg2, . . . The index16 operand provides a 16-bit index into the
symbolic constant pool for the static method to invoke.
This instruction pops the arguments, creates a new
activation record for the static method (including the
popped arguments), and then calls the specified method.

invokevirtual
index16

objRef, arg1, arg2, . . . The index16 operand provides a 16-bit index into the
symbolic constant pool for the method to invoke. The
Java VM uses this instruction to call the specified method
of the objRef’s class.

(continued)

24 Appendix D

Table D-3: Java VM Instructions (continued)

Instruction Stack operands Description

ior intValue, intValue Computes the inclusive-OR of NOS and TOS and leaves
the result on TOS.

irem intValue, intValue This instruction divides NOS by TOS and pushes the
integer remainder back onto the TOS.

ireturn intValue intValue is an integer value. The current method/function
must return an int result. The system pops this value off
the stack, destroys the activation record of the current
method, pushes the intValue onto the stack frame of the
caller, and returns control to the caller.

ishl intValue, intValue This instruction shifts the value in NOS to the left the
number of bit positions specified by (the LO 5 bits of)
TOS and pushes the 32-bit result back onto the TOS.

ishr intValue, intValue This instruction shifts the value in NOS to the right the
number of bit positions specified by (the LO 5 bits of)
TOS and pushes the 32-bit result back onto the TOS. The
right shift is an arithmetic right shift, copying the sign bit
into bit position 30 after each shift operation.

{wide}
istore index

intValue index is an unsigned byte (immediately following the
istore opcode in memory) that provides an offset into the
current stack frame. The local variable at that offset must
contain an int value. This instruction stores the intValue
on TOS to the local variable at the specified offset. If
the optional {wide} instruction prefix occurs immediately
before istore index, then index is an unsigned 16-bit
integer offset.

istore_0
istore_1
istore_2
istore_3

intValue Special single-byte versions of istore index that encode
offsets 0, 1, 2, or 3 into the instruction opcode.

isub intValue, intValue This instruction subtracts TOS from NOS and pushes the
int difference back onto the TOS.

iushr intValue, intValue This instruction shifts the value in NOS to the right the
number of bit positions specified by (the LO 5 bits of)
TOS and pushes the 32-bit result back onto the TOS. The
right shift is a logical right shift, shifting 0s into the HO bit
position after each shift.

ixor intValue, intValue Computes the exclusive-OR of NOS and TOS and leaves
the result on TOS.

jsr index16 The index16 operand provides a signed 16-bit offset from
the jsr instruction. The jsr instruction pushes a return
address onto the stack and then jumps to the Java VM
bytecode at the offset specified by the instruction.

jsr_w index32 The index32 operand provides a signed 32-bit offset from
the jsr_w instruction. The jsr_w instruction pushes a return
address onto the stack and then jumps to the Java VM
bytecode at the offset specified by the instruction.

(continued)

Java Bytecode Assembly for the HLL Programmer 25

Table D-3: Java VM Instructions (continued)

Instruction Stack operands Description

l2d longValue Converts the 64-bit long value on TOS to a double-
precision floating-point value.

l2f longValue Converts the 64-bit long value on TOS to a single-
precision floating-point value.

l2i longValue Converts the 64-bit long value on TOS to a 32-bit
integer value.

ladd longValue, longValue This instruction computes the sum of NOS + TOS, leaving
the sum on TOS.

laload arrayRef, index arrayRef is a pointer to a long array. index is an
unsigned index into that array. This instruction pops the
two operands off the stack and pushes the long element
at arrayRef[index] back onto the stack.

land longValue, longValue This instruction computes the bitwise logical AND of
NOS + TOS, leaving the result on TOS.

lastore arrayRef, index,
longValue

arrayRef is a pointer to an array of 64-bit long objects.
index is an unsigned index into that array. longValue is
a 64-bit value. This instruction pops the longValue off the
stack, pops the next two operands off the stack, and then
stores intValue into the array element at arrayRef[index].

lcmp longValue, longValue This instruction compares the 64-bit NOS to TOS and
leaves the 32-bit value –1, 0, or +1 on the stack if NOS <
TOS, NOS = TOS, or NOS > TOS, respectively.

lconst_0
iconst_1

These instructions push the 64-bit integer constants 0 or 1
onto the TOS.

ldc index index is an unsigned 8-bit constant that specifies the
index of an integer, float, string reference, object
reference, or method reference in the constant pool. This
instruction pushes the specified constant onto the stack.

ldc_w index index is an unsigned 16-bit constant that specifies
the index of an integer, float, string reference, object
reference, or method reference in the constant pool. This
instruction pushes the specified constant onto the stack.

ldc2_w index index is an unsigned 16-bit constant that specifies
the index of a long or double constant in the constant
pool. This instruction pushes the specified constant onto
the stack.

ldiv longValue, longValue This instruction divides NOS by TOS and pushes the
integer quotient back onto the TOS.

{wide}
lload index

index is an unsigned byte (immediately following the
lload opcode in memory) that provides an offset into the
current stack frame. The local variable at that offset must
contain a long value. This instruction pushes that value
onto the stack. If the optional {wide} instruction prefix
occurs immediately before lload index, then index is an
unsigned 16-bit integer offset.

(continued)

26 Appendix D

Table D-3: Java VM Instructions (continued)

Instruction Stack operands Description

lload_0
lload_1
lload_2
lload_3

Special single-byte versions of lload index that encode
offsets 0, 1, 2, or 3 into the instruction opcode.

lmul longValue, longValue This instruction multiplies NOS by TOS and pushes the
long product back onto the TOS.

ineg longValue This instruction negates the long value on TOS.

lookupswitch
default, npairs,
pairs

switchValue pairs is a list of tuples, each containing a signed 32-bit
integer value and a signed 32-bit integer offset. default
is a 32-bit offset. npairs is an unsigned 32-bit integer
specifying the number of entries in the pairs table. This
instruction pops the switchValue integer off the stack and
searches for the value in the pairs list. If it finds the value,
the instruction transfers control to the corresponding
offset. If it does not find the value, the instruction transfers
control to the offset specified by default.

lor longValue, longValue Computes the inclusive-OR of NOS and TOS and leaves
the result on TOS.

lrem longValue, longValue This instruction divides NOS by TOS and pushes the
integer remainder back onto the TOS.

lreturn longValue longValue is an integer value. The current method/
function must return a long result. The system pops this
value off the stack, destroys the activation record of the
current method, pushes the longValue onto the stack
frame of the caller, and returns control to the caller.

lshl longValue, intValue This instruction shifts the value in NOS to the left the
number of bit positions specified by (the LO 5 bits of)
TOS and pushes the 64-bit result back onto the TOS.

lshr longValue, intValue This instruction shifts the value in NOS to the right the
number of bit positions specified by (the LO 5 bits of)
TOS and pushes the 64-bit result back onto the TOS. The
right shift is an arithmetic right shift, copying the sign bit
into bit position 62 after each shift operation.

{wide}
lstore index

longValue index is an unsigned byte (immediately following the
lstore opcode in memory) that provides an offset into the
current stack frame. The local variable at that offset must
contain a long value. This instruction stores the longValue
on TOS to the local variable at the specified offset. If
the optional {wide} instruction prefix occurs immediately
before lstore index, then index is an unsigned 16-bit
integer offset.

lstore_0
lstore_1
lstore_2
lstore_3

longValue Special single-byte versions of lstore index that encode
offsets 0, 1, 2, or 3 into the instruction opcode.

lsub longValue, longValue This instruction subtracts TOS from NOS and pushes the
long difference back onto the TOS.

(continued)

Java Bytecode Assembly for the HLL Programmer 27

Table D-3: Java VM Instructions (continued)

Instruction Stack operands Description

lushr longValue, intValue This instruction shifts the value in NOS to the right the
number of bit positions specified by (the LO 5 bits of)
TOS and pushes the 64-bit result back onto the TOS. The
right shift is a logical right shift, shifting 0s into the HO bit
position after each shift.

lxor longValue, longValue Computes the exclusive-OR of NOS and TOS and leaves
the result on TOS.

monitorenter objRef Enter a monitor for object specified by objRef (that is,
lock the object for exclusive use).

monitorexit objRef Leave a monitor for object specified by objRef (that is,
free the object from exclusive use).

multianewarray
index16,
dimensions

count1, count2, . . . The dimensions operand is an unsigned byte that must
be greater than or equal to 1 (specifying the number
of dimensions for the array). The index16 operand is
an unsigned 16-bit integer providing an offset into the
constant pool that holds the symbolic type information
for the array’s base type. The stack must hold dimensions
integer values, where each value specifies the number of
elements for that dimension of the array. This instruction
allocates storage for the array and leaves an object
reference to the array on TOS.

new index16 The index16 operand is an unsigned 16-bit integer
providing an offset into the constant pool that holds
the symbolic type information for the object’s type.
This instruction allocates storage for the new object
and leaves an object reference on TOS. Note that this
instruction will also initialize the object.

newarray atype count The atype operand is one of the following special values
that specifies the element type:
4: boolean
5: char
6: float
7: double
8: byte
9: short
10: int
11: long
The stack must hold the number of elements for the array.
This instruction allocates storage for the array and leaves
an object reference to the array on TOS.

nop No operation; does nothing.
pop Pops a 32-bit value off the stack.
pop2 Pops a 64-bit double or long off the stack.

putfield index16 objRef, value The index16 operand is an unsigned 16-bit integer
providing an offset into the constant pool that holds the
symbolic type information for the object’s type. This
instruction stores the value on TOS into the field specified
by index16 in the object specified by objRef.

(continued)

28 Appendix D

Table D-3: Java VM Instructions (continued)

Instruction Stack operands Description

putstatic index16 value The index16 operand is an unsigned 16-bit integer
providing an offset into the constant pool that holds
the symbolic type information for the static field. This
instruction stores the value on TOS into the field specified
by index16.

{wide}
ret index

index is an unsigned byte (immediately following the
ret opcode in memory) that provides an offset into the
current stack frame. The local variable at that offset must
contain a return address. This instruction copies that
return address into the Java VM and continues execution
from there. Note that the ret instruction returns from a
call created by the jsr and jsr_w instructions.

return Returns from a method whose type is void. Destroys the
activation record associated with the method and returns
to the activation record of the method’s caller.

saload arrayRef, index arrayRef is a pointer to a short array. index is an
unsigned index into that array. This instruction pops the
two operands off the stack and pushes the short element
at arrayRef[index] back onto the stack (sign-extending it
to 32 bits).

sastore arrayRef, index,
shortValue

arrayRef is a pointer to an array of 16-bit short objects.
index is an unsigned index into that array. shortValue
is a 16-bit value. This instruction pops the shortValue
off the stack, pops the next two operands off the stack,
and then stores shortValue into the array element at
arrayRef[index].

sipush const const is a 16-bit signed integer. This instruction sign-
extends that constant to 32 bits and pushes the result
onto the stack.

swap value, value This instruction swaps the two 32-bit values on NOS
and TOS.

tableswitch
default, lowValue,
highValue,
jumpTable

switchValue default is a 32-bit signed offset. lowValue and highValue
are 32-bit signed integers. If switchValue is outside the
range lowValue..highValue, then this instruction transfers
control to the location specified by default (offset from
the current instruction). jumpTable is a table of (highValue
– lowValue + 1) 32-bit signed offsets. If switchValue is
in the range lowValue..highValue, then this instruction
transfers control via the table entry at index (switchValue
– lowValue).

D.6  For More Information
The full Java VM instruction set appears in the Java Virtual Machine
Specification. You can find the latest edition of this document on Oracle’s
website or at www.writegreatcode.com.

http://www.writegreatcode.com

	Appendix D: Java Bytecode Assembly for the HLL Programmer
	D.1 Assembly Syntax
	D.2 Basic Java Machine Architecture
	D.2.1 Java VM Registers
	D.2.2 Java VM Primitive Types and Values
	D.2.3 Java VM Reference Types
	D.2.4 Java Memory Areas

	D.3 Java VM Addressing Modes
	D.3.1 Immediate and Constant Access
	D.3.2 Java Static Data Access
	D.3.3 Java Class Field Data Access
	D.3.4 Accessing Local Values in the Current Stack Frame
	D.3.5 Accessing Array Data in Java

	D.4 Java VM Conditional Control Flow
	D.5 The Java VM Instruction Set
	D.6 For More Information

