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C I L  A S S E M B LY  F O R  T H E  H L L 

P R O G R A M M E R

The Common Intermediate Language 
(CIL; previously Microsoft Intermediate 

Language, MSIL, or just IL) is a low-level, 
assembly-like language Microsoft originally 

developed for .NET languages. Today, languages inside 
and outside Microsoft use CIL for cross-platform 
development. Compilers for .NET languages typically produce a special 
CIL bytecode rather than true machine language. At load time, a just-in-time 
(JIT) compiler translates CIL bytecode into a sequence of native machine 
instructions that do the same work as specified by that bytecode (note 
that the CIL code is never interpreted). To understand how .NET compil-
ers such as Visual C# and VB.NET/Visual Basic operate, you need a basic 
familiarity with the CIL bytecode instruction set. Therefore, this appendix:

•	 Describes the basic CIL bytecode machine architecture

•	 Provides an overview of CIL bytecode assembly language so that you’ll 
be able to read the bytecode output produced by the .NET compilers 
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E.1  Assembly Syntax
Unlike Java bytecode, the CIL is an actual assembly language. Various 
Microsoft (and other company) language compilers, such as C#, VB.NET, 
and F#, produce CIL assembly language that a CIL assembler converts 
into CIL bytecode. Microsoft calls this assembly language source code 
Intermediate Language Assembly, or ILAsm. This book uses the terms CIL, 
MSIL, and ILAsm interchangeably.

MSIL uses a relatively standard assembly language syntax. Each line of 
source code typically contains an MSIL instruction or directive, as follows:1

.method private hidebysig static void  Main(string[] args) cil managed
{
  .entrypoint
  // Code size       27 (0x1b)
  .maxstack  2
  .locals init (int32 V_0,
           int32 V_1,
           int32 V_2)
  IL_0000:  nop
  IL_0001:  ldc.i4.5
  IL_0002:  stloc.0
  IL_0003:  ldc.i4.6
  IL_0004:  stloc.1
  IL_0005:  ldloc.0
  IL_0006:  ldloc.1
  IL_0007:  add
  IL_0008:  stloc.2
  IL_0009:  ldstr      "Hello World! k={0}"
  IL_000e:  ldloc.2
  IL_000f:  box       [mscorlib]System.Int32
  IL_0014:  call void [mscorlib]System.Console::WriteLine(string, object)
  IL_0019:  nop
  IL_001a:  ret
} // end of method program::Main

E.2  The Motivation for CLR
The .NET Framework provides a runtime environment (CLR) that runs the 
code and provides JIT compilation, library code, and other features. The 
main motivation behind the CLR was to provide a common set of tools for 
different programming languages. Any CLR-based (.NET) language can 
link with modules from other CLR-based languages, and they can share 
data. In Microsoft’s case, for example, VB.NET, C#, C++, and F# program-
mers can all share code and libraries written in their respective languages.

Compilers for CLR languages emit CIL instead of native machine code 
for portability. To write native code compilers for each of n languages on 

1. An explanation of the MSIL instructions appears later in this appendix; this example 
simply demonstrates an MSIL source file.
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m different CPUs,2 you’d have to write m × n different compilers. However, 
when all n language compilers produce a portable output format (such 
as CIL), you only have to write n compilers and m translators that convert 
CIL to a particular CPU’s native code. Writing only m + n language transla-
tion products is considerably less work. This was especially important to 
Microsoft, as it wanted to support the aforementioned VB.NET, C#, C++, 
and F# languages.

Microsoft did not design the CLR for direct execution (via an inter-
preter). The intent was to provide a machine-independent description of 
a program’s semantics that the operating system loader can translate into 
native (executable) machine code as the system needs to execute the code. 

Translation to machine code can happen at three different times: 

Execution time  As the system attempts to execute the CIL bytecode, 
the system translates a CIL module into native code using JIT compiler 
techniques.

Load time  The system translates the entire CIL program into native 
machine code when the program loads into memory. This is known as 
ahead-of-time (AOT) compilation.

Prior to load time  A utility translates a file containing CIL bytecode 
into an executable native code file and writes the executable code to a 
separate file for execution (this is also an AOT compilation process).

At first blush, it might seem that AOT compilation prior to load time is 
always better than JIT compilation. Translating CIL into native machine 
code consumes CPU cycles, after all. Translating the entire program into 
machine code when it first loads into memory could introduce a sizeable 
delay before the program begins execution (especially if any optimization 
happens during translation). Translating the code module by module (or 
function by function) won’t introduce as much of a delay on loading, but it 
will cause delays every time the program encounters a module or function 
that it hasn’t yet translated.

If you do an AOT compilation of the entire executable and save the 
native code as a file (and load and execute that file without any load or run-
time translation), you don’t pay the JIT translation costs every time you run 
the application. However, it’s not always the case that this approach saves 
considerable execution time.

There are two reasons a JIT translation could actually run faster than 
loading the native code. First, CIL is much more compact than native code 
(at least on most modern architectures), so it might be faster to load the 
smaller CIL file and translate the portions of the program that actually 
execute than to load the entire native code application from secondary 
storage to execute it.3

2. Such as the 32-bit 80x86, 64-bit x86-64, 32-bit ARM, 64-bit ARM, MIPS, and PowerPC 
architectures.

3. In practice, modern solid-state drives are very fast, and most large applications contain 
substantial data (requiring the same amount of time to load in native or CIL code), so the 
smaller code size may not make up for the cost of JIT translation.
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The second, and main, reason CIL might run faster is that JIT transla-
tions exhibit locality of reference, whereas executable code is likely to be 
distributed throughout a native file (and, therefore, throughout memory 
once it loads into memory). 

As a result, the CPU is very likely to thrash the cache and virtual 
memory as the program transfers control between functions. The JIT trans-
lation, on the other head, stacks up the native code (as it’s generated) in 
sequential pages in memory, so it’s more likely that the JIT-translated code 
will sit in active cache lines and in virtual memory pages that remain in 
memory. This reduces thrashing and can dramatically improve the applica-
tion’s performance. For this reason, most systems leave larger applications 
in CIL form.

E.3  The CLR Virtual Machine Architecture
The CLR virtual machine (VM)4 uses a typical p-machine (pseudo-machine) 
stack architecture, similar to the UCSD Pascal p-machine from the 1970s 
and 1980s and the Java Virtual Machine. The complete and current docu-
mentation for the CIL VM is available at the ECMA5 website (https://www.
ecma-international.org/publications/standards/Ecma-335.htm). Search online for 
“ECMA 335 CIL standard” to find the latest version of this document.

As is the case with all stack machines, CLR VM programs use an evalu-
ation stack for arithmetic operations, passing arguments to functions, 
and holding local variables and other transient data. Unlike other stack 
machines, such as the JVM, the size of an element on the top of stack 
(TOS) is not some specific size like 32 or 64 bits. Instead, the CLR VM 
operates on items on the TOS as atomic (indivisible) pieces of data. In par-
ticular, both 32-bit and 64-bit objects consume one stack entry; the CLR 
VM doesn’t worry about the fact that one object might consume twice as 
many bits in memory. When performing a 64-bit addition, an application 
pushes two 64-bit values onto the stack and then adds them, leaving a single 
64-bit item on the stack. The CLR VM doesn’t treat this any differently 
from adding two 32-bit values on the stack. 

In actual execution, the CLR typically extends smaller values to 32 bits 
(or some other size) prior to evaluation. However, this is for the benefit of 
the underlying architecture on which the code runs; ultimately, the CLR 
must translate CIL into native machine code, and real-world machine 
architectures tend to force some restrictions onto various operations. For 
example, some architectures (such as ARM and PowerPC) don’t allow you 
to directly add two 8-bit values. Instead, you must first extend them to 32 
bits and then add the 32-bit values together. 

4. Some people are confused by the term virtual machine and assume that code for a VM must 
be interpreted. As the CLR does not interpret CIL but instead compiles it to native code, they 
infer that the CLR is not a VM. However, virtual machine literally means “not a real machine.” By 
that definition, the CLR is most certainly a VM even if no interpreter ever executes the code.

5. The European Computer Manufacturer’s Association, an international standards 
organization.
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E.3.1  CLR Primitive Types and Values
The CLR VM supports several primitive (non-object) types, listed in Table 
E-1. These types are part of the Common Type System (CTS), which is, itself, 
the basis of the Common Language Specification (CLS). The purpose of the 
CTS and CLS is to allow interlanguage interoperability. That is, different 
languages that adhere to the CTS can share data between modules written 
in those languages.

There are many important data types missing from Table E-1. For exam-
ple, languages such as C/C++ and C# support the following data types:

sbyte  8-bit signed integer values

ushort  16-bit unsigned integer values

uint  32-bit unsigned integer values

ulong  64-bit unsigned integer values

These types are not CLS-compliant. That doesn’t mean that the CLR 
VM cannot handle them, only that if you use them you can’t expect those 
values to be interoperable across different languages (such as ILAsm, C#, 
C/C++, VB.Net, and F#). 

Table E-1: CLR Primitive Data Types

C# type C++ type CLS compliant? ILAsm suffix Description

bool bool Yes u1 Boolean. 0 = false, 1 = true; also, any 
nonzero value can also represent true in 
some languages.

byte unsigned char Yes u1 Unsigned byte with values in the range 0..255. 
Can also represent ASCII (8-bit) characters.

sbyte signed char No i1 Signed byte with values in the range 
-128..+127. Can also represent ASCII (7-bit) 
characters.

ushort unsigned short No u2 Unsigned 16-bit integer representing values 
in the range 0..65535.

short signed int Yes i2 Signed 16-bit integer representing values in 
the range ‑32768..+32767.

char wchar Yes u2 16-bit Unicode character values (Basic 
Multilingual Plane [BMP] characters).

uint unsigned int No u4 Unsigned 32-bit integers representing values 
in the range 0..4294967295.

int int Yes i4 Signed 32-bit integers representing values in 
the range ‑2147483348..+2147483347.

ulong unsigned long6 No u4 Unsigned 64-bit integers representing values 
in the range 0..18446744073709551615.

(continued)

6. On 64-bit architectures where C/C++ supports 64-bit unsigned integers.
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Table E-1: CLR Primitive Data Types (continued)

C# type C++ type CLS compliant? ILAsm suffix Description

long long int7 Yes i4 Signed 64-bit integers representing values in 
the range ‑9223372036854775808..
+9223372036854775807.

single single Yes .r4 32-bit single-precision floating-point values.
double double Yes .r8 64-bit double-precision floating-point values.

E.3.2  CLR Reference and Object Types
In addition to the primitive types, the CLR VM supports reference types: 
pointers to other data values. In languages such as C# and VB.NET, ref-
erence types are managed pointers that point to class instances (objects), 
arrays, and strings. In lower-level languages (such as C/C++ and ILAsm), a 
reference is a machine address of some data value (which could also be an 
object, array, or string). In CLR terminology, these are unmanaged pointers. 

Managed pointers are opaque data types; an application obtains a man-
aged pointer by requesting a reference for a known object. The applica-
tion can dereference that value (that is, access the data the managed pointer 
references) and compare it for equality, but it can’t otherwise modify the 
managed pointer. Because a managed pointer is an opaque data type, the 
application doesn’t know anything about its value. It could be a machine 
address, an index into a lookup table, or any other value that the system can 
use to reference the actual data object. 

Unmanaged pointers, on the other hand, are machine addresses that 
the application treats as such. An application can add or subtract an integer 
with an unmanaged pointer (possibly pointing at some illegal address in 
memory) or otherwise manipulate the pointer as though it were an integer 
value. Obviously, such manipulation can result in erroneous calculations in 
an application. This is why languages like VB.NET and C# (attempt to) dis-
allow the use of unmanaged pointers.

E.3.3  CLR VM Memory Spaces (Homes)
The CLR VM attaches additional semantic information to data it controls 
so that the JIT compiler knows which items are function arguments, which 
are local variables, which are static (global) variables, and which are con-
stants. Effectively, the CLR VM associates these different types of memory 
accesses with their own memory spaces (which the CLR VM calls memory 
homes). Memory homes help the CLR VM generate more optimal code.

In a typical VM stack architecture, the CPU references data in three basic 
locations: in global memory (certain constants, static variables, and objects), 
on the stack (that is, relative to where the stack pointer register points in 
memory), and in constant values embedded in machine instructions. In 
the real world, modern machines provide a large number of registers for 

7. On 64-bit architectures where C/C++ supports 64-bit unsigned integers.
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manipulating data and may not even have a hardware stack. Mapping data 
locations in a VM to real hardware can produce suboptimal code.

For example, a Java VM compiler pushes function arguments onto the 
stack, and the function retrieves those arguments from memory by indexing 
off the stack pointer register. Native code compilers try to avoid accessing 
memory by passing function arguments in general-purpose machine regis-
ters. Unfortunately, the Java VM doesn’t really differentiate between function 
arguments on the stack, local variables on the stack, temporary calculations 
on the stack, and so on. As a result, it’s difficult for the Java JIT compiler to 
recognize function arguments and generate code that specifically passes 
these arguments in registers rather than in memory (on the stack). 

To differentiate the memory homes, the CLR VM uses different load 
instructions to push different types of data onto the CLR VM stack. Table 
E-2 shows the basic forms of these load instructions.

Table E-2: Constant Load Instructions

Instruction Description

ldc Load constant. Pushes a constant value onto the stack (from a 
constant pool database that the CLR VM maintains). Memory 
home: constant pool.

ldstr Load string. Pushes the address of (reference to) a literal string object 
onto the stack. The string data itself is in the CLR VM string constant 
pool. Memory home: constant pool.

ldarg Load argument. Pushes a value held in a function argument onto the 
stack. Note that a compiler does not emit this instruction to create the 
argument in the first place; rather, it pushes arguments onto the stack 
in an appropriate order to create those arguments, and the called 
function uses this instruction to fetch an argument passed to it for 
calculations in the function’s body. Memory home: function arguments.

ldloc Load local. Pushes the current value held in a local variable onto the 
stack. Memory home: function local variables.

ldfld Load field. Pushes the current value of a field of some (nonstatic) 
object. Memory home: heap (dynamically allocated memory).

ldsfld Load static field. Pushes the current value of a field of some static 
class, interface, or module. Memory home: static memory.

ldind,
ldobj

Load indirect, load object. Push the value of some variable onto the 
stack based on an address that was previously on the stack. Memory 
home: heap (dynamically allocated memory) or arbitrary object in 
memory (when using unmanaged pointers).

ldelem Load element. Pushes the current value of some element of an array. 
Note that the address of the array and the index into the array 
are on the stack prior to the execution of this instruction. Memory 
home: typically the heap, though it could be anything when using 
unmanaged pointers.

When the CLR JIT compiler sees a ldarg instruction, it knows that the 
instruction is referencing the function argument’s memory home. Based 
on the underlying CPU architecture, the JIT might emit code to obtain the 
data from a machine register rather than from stack memory. 
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E.4  CLR VM Typed Operands
A typical CPU architecture operates on generic bit data. For example, the 
x86 mov instruction copies blocks of 8, 16, 32, or 64 bits. The CPU doesn’t 
know (or even care) that these bits might represent signed integers, 
unsigned integers, characters, or some other data type. An x86 mov al, 
byteVar instruction doesn’t care what type of data is present in the byteVar 
variable. Other than its size, the CPU doesn’t know anything about byteVar’s 
type. The interpretation of the type is left to the application program. CIL 
memory variables, by contrast, maintain their type information as part of 
the data, and the CLR  JIT compiler uses that information to direct native 
code generation.

For example, there are actually six different encodings for the ldarg 
instruction (see Table E-3), specifying which argument to load, but none 
of them encodes type information. Instead, the CIL code maintains type 
information for all variables (arguments, locals, statics, and other objects), 
and the argument number in the ldarg instruction is an index into a small 
database maintained for each function. 

Table E-3: Ldarg Instruction Encoding

ILAsm syntax Encoding (hexadecimal) Description

ldarg.0 06 Load argument number 0 onto the stack.
ldarg.1 07 Load argument number 1 onto the stack.
ldarg.2 08 Load argument number 2 onto the stack.
ldarg.3 09 Load argument number 3 onto the stack.

ldarg.s index8 11 unsigned byte Load argument number 4..255 onto 
the stack.

ldarg index16 FE 0C unsigned word Load argument number 256..65535 onto 
the stack.

Consider the following C# function definition:

static void SomeFunc(short shortIntParm, int intParm, string strParm)
{
      << function body >>
}

In this example, argument 1 refers to shortIntParm, argument 2 refers 
to intParm, and argument 3 refers to strParm.8 These arguments are loaded 
onto the stack using instructions ldarg.1, ldarg.2, and ldarg.3. The ldarg.1 
instruction will sign-extend (to 32 bits) the 16-bit value associated with 
argument shortIntParm. The ldarg.2 instruction will push the 32-bit signed 
integer value associated with intParm onto the stack.9 Finally, the ldarg.3 

8. In C#, argument 0 generally refers to the this pointer, which is typically nil for static func-
tions. However, the exact argument number assignment is chosen by a particular compiler.

9. This assumes that the native int size is a 32-bit integer on the given architecture.
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instruction will push a reference (an address) of the string object strParm 
onto the stack (this will be a 32-bit or 64-bit pointer, depending on the 
underlying CPU architecture).

The ldarg.1 instruction in the SomeFunc() function uses the value 1 as 
an index into a variable table associated with the arguments for SomeFunc(). 
That table entry tells the JIT compiler that the argument is a 16-bit signed 
integer (that table entry will likely contain other information that’s useful 
to the JIT compiler, such as where in memory, or in a register, that 16-bit 
signed value can be found). From this, the JIT knows that it must emit the 
appropriate code to sign-extend the 16-bit value to 32 bits prior to pushing 
the value onto the stack or putting it in some other location where the CPU 
can use the 32-bit integer in a computation. 

E.5  Types and Operations on the Stack
To determine when it must sign-extend (or otherwise change the type) of 
some value it is manipulating on the stack, the JIT compiler needs to consider 
the context surrounding the current instruction. Specifically, it must study 
how the data flows through the program (using a compiler technique known 
as data flow analysis) in order to infer the type changes that will occur.

Consider the following C# code sequence that appears inside some 
function:

int i = 1;
int j = 2;
int k;

k = i + j;

The assignment statement might produce the following ISAsm code:

ldloc.0           // Push i's value onto stack
ldloc.1           // Push j's value onto stack
add               // Add i + j and leave sum on stack
stloc.2           // Pop stack and store result in k

The ldloc instruction is similar in operation to the ldarg instruction, 
except it loads the value of a local variable rather than a function argument 
onto the stack. This sequence assumes that i is local variable 0, j is local 
variable 1, and k is local variable 2.

Now consider the following C# code sequence inside a different function:

double i = 1.0;
double j = 2.0;
double k;

k = i + j;
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Here’s the ILAsm a C# compiler might emit for the assignment statement:

ldloc.0           // Push i's value onto stack
ldloc.1           // Push j's value onto stack
add               // Add i + j and leave sum on stack
stloc.2           // Pop stack and store result in k

In these two examples, the JIT compiler looks at the last two instruc-
tions that push data onto the TOS and infers the type of the stack operands 
by looking up the types of the values that the ldloc instructions pushed on 
the stack. From these instructions, the JIT compiler can determine whether 
it needs to emit code that adds a pair of 32-bit signed integers or a pair of 
64-bit floating-point numbers.

If the data types are incompatible (for example, ldloc.1 pushes a string 
reference and ldloc.2 pushes a 32-bit signed integer), the CLR VM would 
recognize the type incompatibility and report an appropriate error during 
JIT compilation.

E.6  Data Type Conversions
When you do want to work with two incompatible types, a type conversion 
can resolve the issue. The CLR VM provides two type conversion mecha-
nisms: implicit conversions (which load instructions handle automatically) 
and explicit type conversions.

Implicit type conversions occur when memory variables and arguments 
are expanded to the size of the evaluation stack. On most CPUs the evalu-
ation stack holds 32-bit or 64-bit integer values. Therefore, when loading 
smaller integers onto the stack with ldloc, ldarg, or similar instructions, the 
CLR VM automatically sign- or zero-extends 8-bit and 16-bit integer values 
to 32 bits.10 

The CLR VM computes floating-point results using double-precision 
(or better) arithmetic. Therefore, when loading 32-bit single-precision float-
ing-point values onto the stack, the CLR VM implicitly converts them to 
double-precision. On some architectures, the CLR VM might even convert 
single- and double-precision floating-point values to something larger than 
64 bits (for example, to 80-bit extended precision on the x86).

Not all conversions can be implicit in the CIL, however. For example, if 
a program attempts to add an integer and a floating-point value together, 
the two operands must be the same type prior to the addition. Many pro-
gramming languages will perform an implicit (in the HLL) conversion 
from integer to floating-point. However, as the CLR VM doesn’t perform 
this conversion implicitly, the HLL compiler must emit an explicit instruc-
tion to convert the integer value pushed on the stack to a floating-point 
value. The conv.xx instructions accomplish this by taking the value on 
the TOS (whose type the CLR VM will infer via data flow analysis) and 

10. On some architectures, the stack holds 64-bit integers only, so the CLR VM will extend 8-, 
16-, and 32-bit operands to 64 bits. However, such architectures aren’t that common.
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converting it to the type specified by the .xx instruction suffix. The legal 
suffixes appear in Table E-4.

Table E-4: conv Instruction Suffixes

ILAsm syntax Description

conv.i Convert integer on TOS to a natural integer (the natural size for the 
CPU, which could be 16, 32, or 64 bits).

conv.i1 Convert TOS to a 1-byte signed integer.
conv.i2 Convert TOS to a 2-byte signed integer.
conv.i4 Convert TOS to a 4-byte signed integer.
conv.i8 Convert TOS to an 8-byte signed integer.
conv.u Convert integer on TOS to a natural unsigned integer (the natural 

size for the CPU, which could be 16, 32, or 64 bits).
conv.u1 Convert TOS to a 1-byte unsigned integer.
conv.u2 Convert TOS to a 2-byte unsigned integer.
conv.u4 Convert TOS to a 4-byte unsigned integer.
conv.u8 Convert TOS to an 8-byte unsigned integer.
conv.r4 Convert TOS to a 4-byte single-precision floating-point value.
conv.r8 Convert TOS to an 8-byte double-precision floating-point value.

The converted result is then pushed back onto the stack (after possible 
conversion to the stack format). This produces some less-than-intuitive 
results. For example, if you have a double-precision floating-point value 
on the stack, executing the conv.r4 instruction will convert the double-pre-
cision value to single and then back to double-precision before pushing it 
back onto the stack. The value left on the TOS, even though it is in double-
precision form, only maintains the precision of a single-precision value. If 
you were to store this converted value into a single-precision variable and 
then load it back onto the stack, you would have the exact same bit pattern 
on the stack as you had immediately after the conversion.

When converting from larger to smaller integer forms, the CLR VM 
might truncate the value to the number of bits the instruction specifies 
(for example, conv.i8 truncates the result to 8 bits). After the truncation, 
the conv instruction either sign-extends (for signed integer conversions) or 
zero-extends (for unsigned results) the value back to the natural stack size 
(probably 32 bits, though it could be 64). 

In general, conversion from a smaller to a larger integer form is implicit 
in the load instruction. That is, if the native stack size is 32 bits, loading 
an 8-bit or 16-bit integer from memory automatically zero- or sign-extends 
the value to 32 bits (as appropriate for unsigned or signed integers, respec-
tively). To convert an integer to a size larger than the native stack size (for 
example, from some size to 64 bits on most architectures), you need an 
explicit conv.i8 or conv.u8 instruction.

When converting from an integer form to a floating-point format, 
you might lose some precision in the conversion based on the size of the 
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floating-point result you produce. You can’t convert all possible 32-bit 
signed integers to a 32-bit single-precision floating-point value without 
some loss of precision (32-bit floating-point values maintain only 24 bits 
of precision, whereas 32-bit signed integers require 31 bits of precision). 
Likewise, you can’t convert all 64-bit integers to double-precision, because 
the double-precision format supports only a 56-bit mantissa. If you attempt 
to convert a really large integer result to a 32-bit single-precision value, the 
result may be not-a-number (NaN).

When converting real values to integers, the CLR VM truncates the 
result toward 0. However, if the real result is too large to fit in the specified 
integer size, the result is undefined.

Some conversions aren’t possible given the source type and value and 
the destination type. For example, you can’t convert the 16-bit unsigned 
integer value 512 to an 8-bit unsigned integer value, because 512 simply 
doesn’t fit into 8 bits. If you attempt to do this conversion using the conv.u8 
instruction, the result will be 0 (because conv.u8 will truncate all but the LO 
8 bits). This conversion occurs without any indication of error, which can 
produce defects in the running application if it doesn’t expect this behavior. 
To solve this problem, the CIL instruction set provides conv.ovf.xx instruc-
tions for all the integers (signed and unsigned) that check for overflow dur-
ing the conversion. For example, conv.ovf.i8 will generate a runtime error 
if the result on the TOS cannot be converted to a value in the range -128 
through 127.

E.7  Basic CLR VM Control Flow
The CLR VM supports a set of control transfer instructions that are quite sim-
ilar to the JVM instructions. There are conditional branches, unconditional 
branches, instructions that invoke methods (functions), and special instruc-
tions for handling switch/case statements and exception-handling blocks.

There are two unconditional branch instructions: br label and br.s 
label. Both instructions transfer control to the statement associated with 
the label operand (these instructions are comparable to a goto statement 
in an HLL). The difference between the two instructions is their encod-
ing. The br.s instruction is 2 bytes long: a 0x2B opcode followed by an 8-bit 
signed displacement. The br instruction is 5 bytes long: a 0x38 opcode fol-
lowed by a 32-bit signed displacement. The (signed) displacement provides 
the target address (by adding the displacement to the address of the br or 
br.s instruction in the CIL object code). Because the br.s instruction has 
only a 1-byte displacement value, it can transfer control only to a destina-
tion that is within –128 to +127 bytes of the current instruction. The 5-byte 
form of the branch instruction allows control transfer to anywhere within a 
±2GB range around the instruction. Note that branch targets must appear 
with the method containing the branch, so a 2GB range is far more than 
sufficient for any reasonable application (it would be hard to imagine a 
single method containing 2GB of CIL code).
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The most basic conditional branch instructions are brtrue and brfalse.11 
These two instructions expect a value on the TOS containing the value true 
(any nonzero value) or false (0). They pop the value off the TOS, compare 
it against true (brtrue) or false (brfalse), and branch to the label specified 
by the instruction’s operand if the TOS value matches the instruction.

An application can use normal arithmetic operations or a comparison 
instruction to compare two values on the TOS and generate a Boolean 
result to leave on the TOS for use by the brtrue or brfalse instructions. 

E.7.1  Comparison Instructions
There are five comparison instructions, listed in Table E-5, that compare 
the next-on-stack (NOS) value (the one immediately below the TOS) 
against the TOS value. When comparing values, NOS is the left operand 
of the comparison, and TOS is the right operand (that is, NOS op TOS; for 
example, NOS < TOS). These comparison instructions pop two operands 
from the stack and push a single Boolean value back onto the stack.

Table E-5: Comparison Instructions

ILAsm syntax Description

ceq Compare operands on stack for equality. Push true if they are equal, 
and false otherwise.

cgt Compare for NOS > TOS and push true/false based on the result 
(signed integer and floating-point values).

cgt.un Compare for NOS > TOS and push true/false based on the result 
(unsigned integer values).

clt Compare for NOS < TOS and push true/false based on the result 
(signed integer and floating-point values).

clt.un Compare for NOS < TOS and push true/false based on the result 
(unsigned integer values).

For unsigned integer operands, compilers typically use the clt.un and 
cgt.un instructions. For signed integer operands, compilers typically use clt 
and cgt.

Missing from the list of comparisons are tests for not equal, greater than 
or equal, and less than or equal. However, it’s easy enough to synthesize these 
comparisons: if we invert the result of ceq, we effectively get cne. Likewise, 
inverting the result of clt produces cge, and inverting the result of cgt pro-
duces cle. You can invert a Boolean value on the stack by pushing 0 and com-
paring the two values (original Boolean value and 0) for equality using ceq.12

11. All conditional branches have a long and a short form. Therefore, there are also brtrue.s 
and brfalse.s instructions. Henceforth, this chapter will not bother listing the short versions. 
Just remember that short versions are also available.

12. Another option is to push the value 1 and execute the xor instruction. However, this works 
properly only if the TOS previously contains 0 or 1 (and no other value).
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Floating-point comparisons present a special challenge. For normal 
floating-point values, the clt and cgt instructions work as you would expect. 
However, for special floating-point values (specifically, NaNs), the ceq, clt, 
and cgt instructions always return false if either operand (or both) is NaN—
that is, unordered. As a general rule, any comparison involving NaN should 
result in false, so things are good so far. The problem occurs when you 
attempt to compute not equal, less than or equal, or greater than or equal. 
In these situations, you’d also like to leave false on the TOS after the com-
parison if either operand (or both) is unordered. 

The clt.un and cgt.un instructions solve this problem. They return true 
or false based on the result of the comparison if both operands are ordered 
floating-point values; these instructions always push true (1) if the floating-
point values are unordered. In other words, their behavior for unordered 
values is exactly the opposite of the unadorned clt and cgt instructions 
(which always push false if the floating-point operands are unordered). 
Therefore, for floating-point less than or equal or greater than or equal 
comparisons, use the cgt.un or clt.un (respectively) instructions and invert 
the result. The ECMA-335 documentation refers to the clt.un and cgt.un 
instructions as compare less than unsigned or unordered and compare greater than 
unsigned or unordered. The .un suffix stands for unsigned or unordered depend-
ing on whether it is operating on unsigned integers or floating-point values 
that may be unordered.

There’s no ceq.un instruction, because the plain ceq instruction always 
returns false if either (or both) of the operands is unordered. Two unor-
dered operands are always not equal to each other. Therefore, inverting 
the result from a plain ceq instruction will produce the correct value on the 
TOS even if the operands are floating-point and unordered.

If you follow the execution of one of the comparison instructions with 
a brtrue or brfalse instruction, you can transfer control to some label based 
on the result of that comparison. Consider the following examples:

ldloc.1
ldloc.2
ceq
brtrue TheyreEqual // Branch if local.1 == local.2
  .
  .
  .
ldloc 10
ldloc.3
clt
brtrue LessThan    // Branch if local.10 < local.3

To test for less than or equal or greater than or equal, use the brfalse 
instruction to branch if the TOS contains false rather than true:

ldloc.1
ldloc.2
ceq
brfalse TheyreNotEqual // Branch if local.1 != local.2
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  .
  .
  .
ldloc 10
ldloc.3
clt
brfalse LessThan       // Branch if local.10 >= local.3

E.7.2  Branching Instructions
As it turns out, you don’t need the comparison instructions at all for most 
simple compare-and-branch operations. The CIL instruction set includes 
a set of instructions that combine the compare and brtrue/brfalse instruc-
tions (see Table E-6).

Table E-6: Conditional Branch Instructions

ILAsm syntax Description

beq label
beq.s label

Pop two items from stack and branch to label if NOS == 
TOS. (No branch if unordered.)

bge label
bge.s label

Pop two items from stack and branch to label if NOS 
>= TOS. (According to ECMA-335, no branch if 
unordered operands).

bge.un label
bge.un.s label

Pop two items from stack and branch to label if NOS >= 
TOS (unsigned integer operands).

bgt label
bgt.s label

Pop two items from stack and branch to label if 
NOS > TOS. (According to ECMA-335, no branch if 
unordered operands.)

bgt.un label
bgt.un.s label

Pop two items from stack and branch to label if NOS > 
TOS (unsigned integer operands).

ble label
ble.s label

Pop two items from stack and branch to label if NOS 
<= TOS. (According to ECMA-335, no branch if 
unordered operands.)

ble.un label
ble.un.s label

Pop two items from stack and branch to label if NOS <= 
TOS (unsigned integer operands).

blt label
blt.s label

Pop two items from stack and branch to label if 
NOS < TOS. (According to ECMA-335, no branch if 
unordered operands.)

blt.un label
blt.un.s label

Pop two items from stack and branch to label if NOS < 
TOS (unsigned integer operands).

bne label
bne.s label

Pop two items from stack and branch to label if NOS != 
TOS (branch if unordered operands).

bne.un label
bne.un.s label

Pop two items from stack and branch to label if NOS != 
TOS (unsigned operands).

In addition to all the branch instructions, there is one jmp instruction. 
This instruction contains a single method (function) name as an operand 
and transfers control from one method to another. This is a special instruc-
tion that compilers won’t normally generate for user-written statements, so 
you won’t see jmp very often in compiler output.
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The switch instruction, which implements a table-driven selection state-
ment in an HLL, consists of the keyword switch followed by a table of labels. 
This instruction expects a single unsigned integer on the stack. If the value 
is in the range 0 through number of table elements -1, the switch instruc-
tion transfers control to the label at the value’s index into the table. If the 
value is outside this range, the control transfers to the first CIL instruction 
following the table. The binary encoding of the switch instruction is the 
opcode 0x45, followed by a 32-bit unsigned integer specifying the number of 
table entries, and then the table with each entry containing a 32-bit signed 
integer value (which is the offset to the corresponding label from the byte 
immediately following the switch instruction).

There are also call and callvirt instructions for calling static and vir-
tual methods, respectively. These instructions take the method name as 
their argument. The callvirt instruction also expects a pointer to the corre-
sponding object on the TOS. Both instructions expect the caller to push all 
parameter arguments, in the order of their declaration, on the stack prior 
to the execution of the call.

E.8  The CIL Instruction Set
Table E-7 lists all of the CIL instructions and provides a brief discussion of 
their function. The intent of this appendix is not to teach you how to write 
IL assembly language, only to prepare you to read dumps of ILAsm from 
compiled programs. Thus, treat this chapter as a reference guide when read-
ing compiler output in order to figure out how a given HLL generates code 
for its statements.

Table E-7: CIL Instructions

Instruction Description

add Adds TOS and NOS, leaving result on TOS.
add.ovf Adds TOS and NOS (signed integers only), leaving result on TOS. 

Raises an exception if an unsigned overflow occurs.
add.ovf.un Adds TOS and NOS (unsigned integers only), leaving result on TOS. 

Raises an exception if an unsigned overflow occurs.
and Computes bitwise logical AND of TOS and NOS, leaving result 

on TOS.
arglist Pushes the address of a C/C++ varargs argument list.
beq label
beq.s label

Pop two items from stack and branch to label if NOS <= TOS. 
(According to ECMA-335, no branch if unordered operands.)

bge label
bge.s label

Pop two items from stack and branch to label if NOS >= TOS. 
(According to ECMA-335, no branch if unordered operands.)

bge.un label
bge.un.s label

Pop two items from stack and branch to label if NOS >= TOS 
(unsigned integer operands).

bgt label
bgt.s label

Pop two items from stack and branch to label if NOS > TOS. 
(According to ECMA-335, no branch if unordered operands).

(continued)
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Table E-7: CIL Instructions (continued)

Instruction Description

bgt.un label
bgt.un.s label

Pop two items from stack and branch to label if NOS > TOS 
(unsigned integer operands).

ble label
ble.s label

Pop two items from stack and branch to label if NOS <= TOS. 
(According to ECMA-335, no branch if unordered operands.)

ble.un label
ble.un.s label

Pop two items from stack and branch to label if NOS <= TOS 
(unsigned integer operands).

blt label
blt.s label

Pop two items from stack and branch to label if NOS < TOS. 
(According to ECMA-335, no branch if unordered operands.)

blt.un label
blt.un.s label

Pop two items from stack and branch to label if NOS < TOS 
(unsigned integer operands).

bne label
bne.s label

Pop two items from stack and branch to label if NOS != TOS 
(branch if unordered operands).

bne.un label
bne.un.s label

Pop two items from stack and branch to label if NOS != TOS 
(unsigned operands).

box type Type coercion from a value to a system object on the heap. 
Converts a value to an object for compatibility with object-oriented 
programming.

br label
br.s label

Transfer control to specified label (in current function).

break Breakpoint instruction.
brfalse label
brfalse.s label

Pops Boolean value and branches to target label if TOS contained 0.

brinst label
brinst.s label

Branch to label if TOS is a non-null pointer (synonym for brtrue).

brNull label
brNull.s label

Branch if TOS contains null (synonym for brfalse).

brtrue label
brtrue.s label

Pops TOS and branches to label if value is nonzero.

brzero label
brzero.s label

Synonym for brfalse.

call method Calls (static) method specified by operand. Caller pushes arguments 
in order prior to instruction.

calli 
methodDescr

Calls method whose address is on TOS (with arguments specified 
by descriptor argument). Caller pushes arguments in order prior to 
pushing address and executing instruction.

callvirt 
method

Call method specified by argument. Caller pushes arguments in 
order prior to executing instruction. First argument must be pointer to 
object associated with virtual method.

castclass obj Cast object to class specified by argument.
ceq Compare NOS to TOS for equality. Leave Boolean result on TOS.
cgt Compare NOS to TOS for greater than. Leave Boolean result on 

TOS. Unordered operands always produce false.

(continued)
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Table E-7: CIL Instructions (continued)

Instruction Description

cgt.un Compare unsigned or floating-point NOS to TOS for greater 
than. Leave Boolean result on TOS. Unordered operands always 
produce true.

ckfinite Throw an exception if the TOS is not a finite (floating-point) value.
clt Compare NOS to TOS for less than. Leave Boolean result on TOS. 

Unordered operands always produce false.
clt.un Compare unsigned or floating-point NOS to TOS for less than. Leave 

Boolean result on TOS. Unordered operands always produce true.
constrained 
.type

This is a prefix for the callvirt instruction. It allows value and 
reference types to be used interchangeably for certain method calls.

conv.i
conv.i1
conv.i2
conv.i4
conv.i8

Converts operand on TOS to the native signed integer format (.i) or 
to a specified integer size (.1 through .i8).

conv.ovf.i
conv.ovf.i1
conv.ovf.i2
conv.ovf.i4
conv.ovf.i8

Converts operand on TOS to the native signed integer format (.i) 
or to a specified integer size (.i1 through .i8). Raises an overflow 
exception if the original value on TOS cannot be converted to the 
specified size.

conv.ovf.i.un
conv.ovf.i1.un
conv.ovf.i2.un
conv.ovf.i4.un
conv.ovf.i8.un

Converts unsigned operand on TOS to the native signed integer 
format (.i) or to a specified integer size (.i1 through .i8). Raises an 
overflow exception if the original value on TOS cannot be converted 
to the specified size.

conv.ovf.u
conv.ovf.u1
conv.ovf.u2
conv.ovf.u4
conv.ovf.u8

Converts operand on TOS to the native unsigned integer format (.u) 
or to a specified unsigned integer size (.u1 through .u8). Raises an 
exception if overflow occurs.

conv.ovf.u.un
conv.ovf.u1.un
conv.ovf.u2.un
conv.ovf.u4.un
conv.ovf.u8.un

Converts unsigned operand on TOS to the native unsigned integer 
format (.u) or to a specified unsigned integer size (.u1 through .u8). 
Raises an exception if overflow occurs.

conv.r.un Converts unsigned operand on TOS to a floating-point value.
conv.r4 Converts TOS to a 32-bit floating-point value (which then gets 

converted to the native floating-point format on TOS).
conv.r8 Converts TOS to a 64-bit floating-point value (which then gets 

converted to the native floating-point format on TOS).
conv.u
conv.u1
conv.u2
conv.u4
conv.u8

Converts operand on TOS to the native unsigned integer format (.u) 
or to a specified unsigned integer size (.u1 through .u8).

cpblk Copy a block of memory from one location to another. Source 
address, destination address, and size are all on the stack.

(continued)
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Table E-7: CIL Instructions (continued)

Instruction Description

cpobj type Copies the data of some source object (address on stack, of type 
type) to a destination object (whose address is also on the stack).

div Divides NOS by value on TOS, leaving result on TOS (signed integer 
or floating-point values).

div.un Divides NOS by value on TOS, leaving result on TOS (unsigned 
integer values).

dup Duplicates the value on TOS.
endfault Ends the fault clause of an exception block.
endfilter Ends the filter clause of an exception block.
endfinally Ends the finally clause of an exception block.
initblk Initializes a block of memory to a given value.
initobj type Initializes an object (address on TOS) of type type with appropriate 

initial values (0s or nulls).
isinst type TOS contains an object reference (address). Pushes true if the object 

of type type, and false otherwise.
jmp method Exits the current method and transfers control to the method specified 

by the operand.
ldarg index32
ldarg.s index8
ldarg.0
ldarg.1
ldarg.2
ldarg.3

Loads the method/function argument specified by the operand index 
onto the TOS (or index 0, 1, 2, or 3 for the short forms).

ldc.i4 
int_const32
ldc.i4.s 
int_const8

Loads the specified 32-bit signed constant onto the TOS (ldc.i4.s is 
a special short form that supports an 8-bit signed integer constant).

ldc.i4.m1
ldc.i4.0
ldc.i4.1
ldc.i4.2
ldc.i4.3
ldc.i4.4
ldc.i4.5
ldc.i4.6
ldc.i4.7
ldc.i4.8

Compact form of ldc. Pushes the value -1..8 onto the TOS.

ldc.r4 
flt_const32
ldc.r8 
flt_const64

Loads the specified floating-point constant onto the TOS.

ldelem type TOS contains an array reference and an index. Array elements have 
type type. This instruction loads the specified array element onto 
the TOS.

(continued)
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Table E-7: CIL Instructions (continued)

Instruction Description

ldelem.i
ldelem.i1
ldelem.i2
ldelem.i4
ldelem.i8

TOS contains an array reference and an index. Array elements are a 
native integer, 1-byte integer, 2-byte integer, and so on, as specified 
by instruction suffix. This instruction loads the specified array element 
onto the TOS.

ldelem.r4
ldelem.r8

TOS contains an array reference and an index. Array elements are 
single- or double-precision floating-point values, as specified by 
instruction suffix. This instruction loads the specified array element 
onto the TOS.

ldelem.ref TOS contains an object reference and an index. Array elements are 
some object type. This instruction loads the specified array element 
onto the TOS.

ldelem.u1
ldelem.u2
ldelem.u4
ldelem.u8

TOS contains an array reference and an index. Array elements are 
a 1-byte unsigned integer, 2-byte unsigned integer, and so on, as 
specified by instruction suffix. This instruction loads the specified 
array element onto the TOS.

ldelema class The stack contains an object reference (of type class) and an index. 
Loads the address of the specified element onto TOS.

ldfld field TOS contains an object reference (address). Loads the field specified 
by the operand onto the TOS.

ldflda field TOS contains an object reference (address). Loads the address of the 
field specified by the operand onto the TOS.

ldftn method Loads the address of the method whose name is specified by the 
operand onto the stack.

ldind.i
ldind.i1
ldind.i2
ldind.i4
ldind.i8

The TOS contains the address of a signed integer (natural, 1-byte, 
2-byte, 4-byte, or 8-byte). This instruction loads the value of that 
integer onto the TOS.

ldind.r4
ldind.r8

The TOS contains the address of a floating-point value (32-bit or 
64-bit). This instruction loads the real value onto the TOS.

ldind.ref The TOS contains the address of an object. This instruction loads the 
value of that object onto the TOS.

ldind.u1
ldind.u2
ldind.u4
ldind.u8

The TOS contains the address of an unsigned integer (1-byte, 2-byte, 
4-byte, or 8-byte). This instruction loads the value of that integer onto 
the TOS.

ldlen The TOS contains an array reference. This instruction loads the size 
of that array onto the TOS as an unsigned integer.

ldloc index32
ldloc.s index8
ldloc.0
ldloc.1
ldloc.2
ldloc.3

This instruction loads the value of a local variable onto the TOS. The 
local variable is specified by index as either 0, 1, 2, 3; an unsigned 
8-bit index; or a 32-bit unsigned index.

ldloca index32
ldloca.s 
index8

This instruction loads the address of a local variable onto the TOS. 
The local variable is specified by index as either an unsigned 8-bit 
index or a 32-bit unsigned index.

(continued)
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Table E-7: CIL Instructions (continued)

Instruction Description

Ldnull Loads the value null onto the TOS.
ldobj type TOS contains a reference to an object of type type. This instruction 

copies the value of that object onto the TOS.
ldsfld field The operand is the class and field name of a static field. This 

instruction loads the value of that field onto the TOS.
ldsflda field The operand is the class and field name of a static field. This 

instruction loads the address of that field onto the TOS.
ldstr string This instruction loads a reference to the string literal string onto 

the TOS. Note that in the actual CIL object file, the ldstr instruction 
encodes the string as a 32-bit index, providing a link to the string 
data appearing elsewhere in the CIL file (the metadata, or string 
constant database, in the CIL).

ldtoken token This instruction pushes a runtime token onto the stack that represents 
the token operand. Metadata is information in the CIL object file 
containing information (such as runtime type information) about the 
program. For more information, see https://en.wikipedia.org/wiki​
/Metadata_(CLI).

ldvirtftn 
method

TOS contains an object reference. This instruction pushes the address 
of the virtual method specified by that reference and the method 
operand onto the TOS.

leave label
leave.s label

These instructions are functionally equivalent to the br and br.s 
instructions except they allow you to exit from an exception-handling 
block (br instructions can transfer control only within the body of an 
exception handler, never out of it).

localloc TOS contains an unsigned integer specifying some number of bytes 
to allocate on the local heap. This instruction allocates the specified 
number of bytes on the local heap and returns a pointer to that block 
on the TOS. When the current function returns, all data on the local 
heap is released to the system for future use.

mkrefany class Pops a pointer to a block of data off the stack, converts that pointer 
to a reference of type class, and pushes the resulting reference back 
onto the TOS.

mul Multiplies NOS by TOS, leaving the product on TOS. No exception if 
overflow occurs.

mul.ovf Multiples two signed integers (NOS by TOS), leaving result on the 
TOS. If a signed overflow occurs, this instruction raises an exception.

mul.ovf.un Multiples two unsigned integers (NOS by TOS), leaving result on 
the TOS. If an unsigned overflow occurs, this instruction raises 
an exception.

neg Negates the value on TOS (floating-point or signed integer).
newarr type TOS contains an unsigned integer specifying the number of elements. 

This instruction allocates storage for a single-dimensional array 
whose element type is type and pushes a reference to the array 
onto the stack.

(continued)
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Table E-7: CIL Instructions (continued)

Instruction Description

newobj constr This instruction expects zero or more parameters on the stack (as 
appropriate for the class constructor specified by constr). This 
instruction allocates sufficient storage for an object of the constr’s 
class and then invokes the constructor.

nop No operation (does nothing).
not Bitwise inversion (complement) of the value on TOS (leaving the result 

on TOS). Note that pushing true and executing not does not produce 
false. Instead, this sequence produces a value that has all 1 bits 
except for bit 0 (which the system will still treat as the value true for 
the purposes of compare and conditional branch instructions).

or Bitwise OR of NOS with TOS, leaving the result on TOS.
pop Pops (deletes) the value on TOS.
readonly Used as a prefix for ldelema instruction to specify that the resulting 

address points at a read-only value in memory.
refanytype A value type reference appears on the TOS. This instruction replaces 

that value with the type token for that value. Used with the mkrefany 
instruction.

refanyval A value type reference appears on the TOS. This instruction replaces 
that value type reference with the address for that value. Used with 
the mkrefany instruction.

rem Remainder when dividing signed integer NOS by TOS.
rem.un Remainder when dividing unsigned integer NOS by TOS.
ret Return from function/method.
rethrow Rethrow the current exception.
shl Shifts NOS to the left the number of bits specified by TOS and leaves 

the result on TOS.
shr Shifts NOS to the right the number of bits specified by TOS and 

leaves the result on TOS. Shift is an arithmetic shift right, shifting the 
sign bit into the next-to-HO bit position of the value.

shr.un Shifts NOS to the right the number of bits specified by TOS and 
leaves the result on TOS. Shift is a logical shift right, shifting 0s into 
the HO bit position of the value.

sizeof type Pushes the size of type, in bytes, onto the TOS as an unsigned integer.
starg index32
starg.s index8

Pops the value off TOS and stores it into the method/function 
argument specified by the operand index.

stelem type TOS contains a value (of type type); NOS contains an index and the 
stack entry below NOS contains an array reference. This instruction 
stores the specified value into the array at the given index.

stelem.i
stelem.i1
stelem.i2
stelem.i4
stelem.i8

Top three elements on the stack contain a (signed integer) value, 
index, and array reference. This instruction stores the value into 
the appropriate array element. The element type is either a natural 
signed integer, or a 1-, 2-, 4-, or 8-byte signed integer as specified 
by the instruction suffix.

(continued)



CIL Assembly for the HLL Programmer   23

Table E-7: CIL Instructions (continued)

Instruction Description

stelem.r4
stelem.r8

Top three elements on the stack contain a (floating-point) value, 
index, and array reference. This instruction stores the value into the 
appropriate array element. The element type is either a single- or 
double-precision float as specified by the instruction suffix.

stelem.ref Top three elements on the stack contain an object reference value, 
index, and array reference. This instruction stores the object 
reference value into the appropriate array element.

stfld field NOS contains an object reference. TOS contains a value. The stdfld 
instruction stores the value into the field of the object specified by the 
field operand.

stind.i
stind.i1
stind.i2
stind.i4
stind.i8

TOS contains a signed integer value. NOS contains the address 
of a natural, 1-, 2-, 4-, or 8-byte signed integer (as specified by 
the instruction suffix). This instruction stores the integer value at the 
specified address.
Note that there are no store indirect unsigned instructions. Compilers 
might generate these instructions to store unsigned values, as the 
store operation is identical for signed and unsigned integers.

stind.r4
stind.r8

TOS contains a floating-point value. NOS contains the address of 
a single- or double-precision floating-point variable (as specified 
by the instruction suffix). This instruction stores the float value at the 
specified address.

stind.ref TOS contains an object value. NOS contains a pointer to an object 
variable of the same type. This instruction stores the value at the 
specified address.

stloc index32
stloc.s index8
stloc.0
stloc.1
stloc.2
stloc.3

Pops the value off TOS and stores it into the local variable specified 
by the operand index or local variable 0, 1, 2, or 3 (as specified by 
the instruction suffix).

stobj class An object value of type class appears on TOS; a pointer to an 
object of type class appears on NOS. This instruction pops the value 
and stores it at the specified address.

stsfld 
class:field

An object value of type class appears on TOS. This instruction 
pops that value off TOS and stores it into the static field specified by 
class:field.

sub Computes NOS – TOS and leaves the result on TOS.
sub.ovf The stack contains two signed integer values. This instruction 

computes NOS – TOS and leaves the result on TOS. If a signed 
arithmetic overflow occurs, this instruction raises an exception.

sub.ovf.un The stack contains two unsigned integer values. This instruction 
computes NOS – TOS and leaves the result on TOS. If an unsigned 
arithmetic overflow occurs, this instruction raises an exception.

switch [table] The table operand is a list of statement labels in the current function 
(subject to the same rules as branch labels). This instruction pops an 
unsigned integer value from the TOS and uses it as an index into 
the table. If the index is less than the size of the table, this instruction 
transfers control to the corresponding label. If the index is out of range, 
control transfers to the next instruction following the switch instruction.

(continued)
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Table E-7: CIL Instructions (continued)

Instruction Description

tailcall This is a prefix to the call, callvert, or calli instructions. It performs 
a tail-recursive call.

throw TOS contains an object reference (an exception object). This 
instruction throws an exception.

unaligned An instruction prefix that may appear before certain load and store 
instructions informing the system that unaligned memory accesses 
are legal.

unbox type Undoes the effects of a box instruction. That is, it takes a boxed 
object reference and converts it to a value (of type type).

unbox.any type Undoes the effects of a box instruction. That is, it takes a boxed 
object reference and converts it to a value (of type type). When 
unboxing a value type, this is comparable to unbox followed 
by ldobj. When unboxing a reference type, this is basically a 
cast operation.

volatile A prefix to various load and store operations informing the system 
that multiple threads might access this value (thus, the CLR JIT 
optimizer must not cache values, and multiple stores to the same 
address cannot be suppressed).

xor Bitwise exclusive-OR of NOS with TOS, leaving the result on TOS.

E.9  For More Information
Box, Don, with Chris Sells. Essential .NET, Volume 1. Boston: Addison-Wesley 

Professional, 2002.

Lidin, Serge. Inside Microsoft .NET IL Assembler. Redmond, WA: Microsoft 
Press, 2002.

———. Expert .NET 2.0 IL Assembler. Berkeley, CA: Apress, 2006.

———. .NET IL Assembler. Berkeley, CA: Apress, 2014.

Pratschner, Steven. Customizing the Microsoft® .NET Framework Common Language 
Runtime (Developer Reference). Redmond, WA: Microsoft Press, 2005. 

N O T E 	 The resources at www.writegreatcode.com contain links to the full documentation 
for the CIL.

http://www.writegreatcode.com
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