
A basic understanding of ARM assem-
bly language will enable you to read the

ARM output produced by compilers on
machines like most mobile phones or tablets,

the Raspberry Pi, and even some higher-end Arduino-
class single-board computers (such as the Teensy 3.6).
Thus, this appendix provides an overview of:

•	 The basic ARM machine architecture

•	 ARM assembly language (so that you’ll be able to read the ARM output
produced by the GCC compiler)

•	 The memory addressing modes of the ARM CPU

•	 The syntax used by the ARM Gas assembler

•	 How to use constants and declare data in assembly language programs

In addition, the resources at www.writegreatcode.com describe a minimal
ARM instruction set that you’ll need when examining compiler output.

C
A R M A S S E M B LY F O R T H E H L L

P R O G R A M M E R

2 Appendix C

C.1  Assembly Syntaxes
As Chapter 3 explained, there are significant syntax differences in the
code generated by various assemblers for the 80x86. ARM assemblers, by
contrast, use a much more uniform syntax, so this book uses the syntax
employed by the Gnu assembler (Gas) as provided on the Raspberry Pi. You
should have no trouble reading ARM assembly listings produced for other
assemblers if you learn the Gas syntax used in this book.

C.2  Basic ARM Architecture
The ARM, Inc.,1 ARM CPU family is classified as a Von Neumann machine.
Von Neumann computer systems contain three main building blocks: the
central processing unit (CPU), memory, and input/output (I/O) devices. These
three components are connected together via the system bus (consisting of
the address, data, and control buses). Figure 3-1 showed this relationship.

The CPU communicates with memory and I/O devices by placing a
numeric value on the address bus to select one of the memory locations
or I/O device port locations, each of which has a unique binary numeric
address. Then the CPU, I/O, and memory devices pass data among them-
selves by placing the data on the data bus. The control bus provides signals
that determine the direction of the data transfer (to/from memory and
to/from an I/O device).

The registers are the most prominent feature within the CPU. The
ARM CPU registers are categorized as general-purpose integer registers,
floating-point/SIMD (single-instruction, multiple data) registers, special-
purpose application-accessible registers, and special-purpose kernel-mode
registers. Special-purpose kernel-mode registers are intended for writing
operating systems, debuggers, and other system-level tools. That topic is
well beyond the scope of this book, so they will not be discussed further.

C.2.1  32- and 64-Bit Variants
The ARM architecture describes a family of CPUs. The original stand-alone
ARM processor (ARMv2) was a relatively simple 32-bit processor with a
26-bit address space. As time passed, different variants emerged, and the
ARMv7 architecture (with a 32-bit physical address bus) became the pre-
dominant architecture in smartphones throughout the 2000s. The ARMv8
64-bit variant (with a 48-bit physical address bus) appeared in 2011 and
quickly replaced the ARMv7 in smartphones and tablets as well as in later
Raspberry Pi models.

1. ARM used to be ARM Holdings, Inc. Before that, it was Advanced RISC Machines, and
originally it was Acorn RISC Machines. Today, the company simply goes by ARM, Inc.

ARM Assembly for the HLL Programmer 3

Although the 32-bit ARMv7 and earlier variants (we’ll call these the
“A32 CPUs”) are still used in microcontrollers and embedded devices, most
modern ARM computing devices use ARMv8 or later versions (the “A64
CPUs”). Alas, the Raspberry Pi family contains a mixture of ARMv7 and
ARMv8 processors. Therefore, the Raspberry Pi Foundation (the outfit that
created and sells the Raspberry Pi) currently provides only 32-bit support
in their version of Linux (Raspbian), even on 64-bit CPUs. Suse Linux (by
Suse, LLC) and OpenSUSE, however, do provide 64-bit variants of Linux
running on Raspberry Pi computers. This book typically presents A32
examples running on the standard Raspbian releases for the Raspberry Pi.
Where 64-bit examples are appropriate, though, it presents A64 examples
running under Apple’s iOS and OpenSuse (on the Raspberry Pi).

C.2.2  General-Purpose Integer Registers

C.2.2.1  ARMv7 (A32) Registers

The 32-bit variants of the ARM provide 13 general-purpose 32-bit regis-
ters (R0 through R12). There are three additional 32-bit registers with
special names: SP (stack pointer), LR (link register), and PC (program
counter). Note that R11 is commonly used as a frame-pointer register in
compiler-generated code on A32, and you’ll often see FP equated to R11
in source code.

C.2.2.2  ARMv8 (A64) Registers

The A64 CPUs provide 31 general-purpose 64-bit registers for application
use. Most compilers refer to these registers as X0 through X30. There is an
additional register, corresponding to X31, that holds the stack pointer value
(which most programs refer to as SP). The stack pointer serves double-duty:
for stack-based instructions, the SP register behaves like a normal stack
pointer register on other CPUs; for non-stack-related operations, reading this
register (named XZR) returns the value 0, while data written to it is ignored.

The A64 also supports 32-bit operations on the register set using the
register names W0 through W30. The 32-bit registers comprise the LO
32-bits of the 64-bit register set.

The A64 PC register is not mapped to a general-purpose register.
Therefore, you cannot use the mov instruction to create an indirect jump by
moving some other register into the PC. There is, however, a new branch
instruction, br, on the 64-bit ARM that accepts a general-purpose register
as the operand; this instruction copies the register operand’s value into the
PC register.

X30 on the A64 is the link register (LR) on the A64. Executing the
branch and link (bl) instruction copies the address of the instruction fol-
lowing the bl into the X30 register.

4 Appendix C

C.2.3  Floating-Point and SIMD Registers
Floating-point support is optional on ARM processors. That being said,
almost any A64 CPU you encounter will likely provide full floating-point
support. However, A32 CPUs on various devices may have differing FPU
capabilities. It’s always important, then, to determine exactly which A32
you’re using before assuming any particular floating-point capabilities. For
example, the ARM Cortex M4 CPU on the Teensy 3.6 device supports only
single-precision arithmetic, whereas the ARM Cortex A7 in the Raspberry
Pi 2 Model B supports single-precision, double-precision, and vector opera-
tions.2 This book assumes that an A32 supports the ARM VFPv4-D32
floating-point extensions. Again, if you’re using a specific device, be sure to
check its architecture manual to determine its floating-point capabilities.

C.2.3.1  A32 Floating-Point Registers

An A32 CPU with VFPv4 support provides the following floating-point
registers:

•	 32 single-precision (32-bit) floating-point registers, named S0
through S31

•	 16 or 32 double-precision (64-bit) floating-point registers, named D0
through D15 or D0 through D31 (the number of registers depends on
the floating-point architecture: VFPv4-D16 or VFPv4-D32)

•	 One floating-point status and control register (FPSCR; see Figure C-1)

Note that the S0 through S31 and D0 through D15/D31 registers are
not necessarily independent of one another. On some ARM architectures
the single- and double-precision floating-point registers share the same
bits inside the FPU. See your particular ARM manual for details. On the
VFPv4-D32 (with NEON extensions), the S0 through S31 single-precision
floating-point registers overlap the first 16 double-precision registers.
The 32 double-precision registers (D0 through D31) overlap the 16 quad-
precision (128-bit) registers (Q0 through Q15). See Figure C-2 for details.

2. The Raspberry Pi 3 uses an ARM Cortex A53 CPU (A64), which provides a full-featured
CPU. Most Apple CPUs (iPhone, iPad, and the like) provide outstanding FPU capabilities,
as do most modern Android phones, tablets, and other systems.

ARM Assembly for the HLL Programmer 5

Input denormal cumulative
exception flag

Inexact cumulative exception flag

Underflow cumulative exception flag

Overflow cumulative exception flag

Division by zero cumulative exception flag

Invalid operation cumulative exception flag

15 0

Alternative
half-precision
control
Default NaN
Flush to zero
Rounding mode
Stride
Length

Reserved

31 16

N Z C V

Figure C-1: ARM FPSCR register

S0

S31

D0

D1

D30

D31

Q0

Q7

Q15

Q6

D15

D14

D2 Q1

Figure C-2: A32/VFPv4 floating-point registers

6 Appendix C

C.2.3.2  A64 Floating-Point Registers

The A64 CPUs provide the same set of floating-point registers as A32
(single-, double-, and quad-precision). However, there are a couple of dif-
ferences. First, the A64 FPU implementation provides 32 quad-precision
registers (Q0 through Q31). Second, although the registers still overlap, S0
through S31 comprise the LO 32 bits of D0 through D31 (rather than pack-
ing S0 through S31 into D0 through D15). Likewise, D0 through D31 com-
prise the LO 64 bits of Q0 through Q31 (see Figure C-3).

S0

S31

D0

D1

D30

D31

Q0

Q31

D2

Q1

Q30

Q2

S1

S2

S30

Figure C-3: A64 floating-point registers

C.2.3.3  Condition Code Bits

The ARM CPUs provide four separate condition code bits: N (sign), Z
(zero), C (carry), and V (overflow). From a historical perspective, these are
the same condition codes found on the MOS Technology 6502 proces-
sor—the CPU used in the Acorn machine (Acorn Computers invented the
original ARM processor). The condition code bits on the ARM provide the
typical signed, unsigned, and floating-point equal, not equal, greater than,
greater than or equal, less than, less than or equal, negative, positive (or
zero), and overflow (signed and unsigned) tests.

Most ARM instructions don’t normally affect the condition code bits.
Instead, there are special instructions (mostly with an S suffix) that explicitly
set the condition codes. Typically, these are arithmetic and logical instructions.

The ARM processors maintain the condition codes in a special
Application Program Status Register (APSR). This register contains the N, V, C,
and Z condition code bits along with a saturation (Q) status bit indicating
whether arithmetic saturation occurs.

The floating-point compare instruction (fcmp) updates a separate set of
condition code flags in the FPSCR. You must copy these flags into their corre-
sponding flags in the APSR using the fmstat instruction prior to testing them.

ARM Assembly for the HLL Programmer 7

C.2.3.4  The Link Register

The ARM LR (link register; X30 on A64, and R14 on A32) holds a return
address after the execution of a branch and link instruction. Executing the
bl instruction leaves the address of the instruction following the branch
in the LR. ARM applications use this register to implement returns from
subroutine operations as well as to compute program-counter-relative
addresses for various operations.

C.3  Literal Constants
Like most assemblers, Gas supports literal numeric, character, and string
constants. This section describes their syntax.

C.3.1  Binary Literal Constants
Binary literal constants in Gas begin with the special 0b prefix followed by
one or more binary digits (0 or 1). Examples:

0b1011
0b10101111
0b0011111100011001
0b1011001010010101

C.3.2  Decimal Literal Constants
Decimal literal constants in Gas take the standard form—a sequence of one
or more decimal digits without any special prefix or suffix. Examples:

123
1209345

C.3.3  Hexadecimal Literal Constants
Hexadecimal literal constants in Gas consist of a string of hexadecimal
digits (0..9, a..f, or A..F) with a 0x prefix. Examples:

0x1AB0
0x1234ABCD
0xdead

C.3.4  Character and String Literal Constants
Character literal constants in Gas consist of an apostrophe followed by a
single character. Examples:

'a
''
'!

8 Appendix C

String literal constants in Gas consist of a sequence of zero or more char-
acters surrounded by quotes. They use the same syntax as C strings. You use
the \ escape sequence to embed special characters in a Gas string. Examples:

"Hello World"
"" -- The empty string
"He said \"Hello\" to them"
"\"" -- string containing a single quote character

C.3.5  Floating-Point Literal Constants
Floating-point literal constants in assembly language typically take the same
form you’ll find in HLLs—a sequence of digits, possibly containing a deci-
mal point, optionally followed by a signed exponent. Examples:

3.14159
2.71e+2
1.0e-5
5e1

C.4  Manifest (Symbolic) Constants in Assembly Language
Almost every assembler provides a mechanism for declaring symbolic
(named) constants. Gas uses the .equ (“equate”) statement to define a sym-
bolic constant in the source file. This statement uses the following syntax:

.equ symbolName, value

Here are some examples within a Gas source file:

.equ false, 0

.equ true, 1

.equ anIntConst, 12345

C.5  ARM Addressing Modes
ARM instructions can access three types of operands: register operands,
immediate constants, and memory operands.

C.5.1  ARM Register Access
Gas allows assembly programmers and compiler writers to access the ARM
general-purpose integer registers by name:

•	 A32: R0; R1 through R12; LR; SP; and PC

•	 A64: X0; X1 through X30; W0; W1 through W30; LR; SP; and PC

ARM Assembly for the HLL Programmer 9

Floating-point instructions access the floating-point registers by their
name (S0 through S31 or D0 through D31). Note that floating-point reg-
isters are legal only as floating-point instruction operands (just as integer
instructions are accessible only within integer instructions).

C.5.2  The Immediate Addressing Mode
Many integer instructions allow a programmer to specify an immediate
constant as a source operand. However, as all ARM instructions are exactly
32 bits in size, a single instruction cannot load a 32-bit (or larger) constant
into an ARM register. The ARM’s instruction set does support immediate
constants that are 8 bits in size (or smaller), possibly rotated in a 32-bit word
by an even multiple of bits (0, 2, 4, 6, 8, . . . , 30 bits). The ARM CPU uses an
additional 4 bits to encode these 16 different rotate positions (see Table C-1).

Table C-1: Immediate Constant Encoding for 8-Bit Binary Values

Rotate encoding Value (in binary)

0 000000000000000000000000ABCDEFGH

1 GH000000000000000000000000ABCDEF

2 EFGH000000000000000000000000ABCD

3 CDEFGH000000000000000000000000AB

4 ABCDEFGH000000000000000000000000

5 00ABCDEFGH0000000000000000000000

6 0000ABCDEFGH00000000000000000000

7 000000ABCDEFGH000000000000000000

8 00000000ABCDEFGH0000000000000000

9 0000000000ABCDEFGH00000000000000

10 000000000000ABCDEFGH000000000000

11 00000000000000ABCDEFGH0000000000

12 0000000000000000ABCDEFGH00000000

13 000000000000000000ABCDEFGH000000

14 00000000000000000000ABCDEFGH0000

15 0000000000000000000000ABCDEFGH00

Although it’s impossible to encode all possible 32-bit values with only
12 bits, the 12-bit encoding does cover a wide variety of useful constants. In
particular, you can create a constant that has a single 1 bit set in each of the 32
different bit positions (that is, by setting the G and H bits in Table C-1 or 01 or 10
and employing all 16 different rotate encodings). One drawback to this scheme
is that you can’t create 4,096 different constant encodings because it’s possible
for certain (different) encodings to produce the same constant. For example,
you can produce the value 4 by encoding (4 rotate 0) and (1 rotate 15).3

3. (4 rotate 0) has a 1 bit in the F position, while (1 rotate 15) has a 1 bit in the H position.
All other bits are 0.

10 Appendix C

For immediate values that the ARM cannot encode into the instruction,
the ARM requires that you load the constant into a register from a memory
location.4 The most obvious downside to this is that the code is larger and
slower, but another problem is that you must dedicate a precious register to
hold the immediate value.

C.5.3  ARM Memory Addressing Modes
The ARM CPU is a load/store architecture, meaning that it can only access
(data) memory using load and store instructions. All other instructions
operate on registers (or small immediate constants). With a load/store
architecture, for example, you cannot directly add the contents of some
memory location to a register value—you must first load the memory data
into a register and then add that register to the destination register’s value.

Arguably, the ARM CPU supports a single addressing mode: auto-
increment/decrement scaled indexed with offset plus write-back. Technically,
though, there are 4 bits of encoding within the load/store instruction to
control this “single” addressing mode, so in reality the ARM is very un-RISC-
like and supports 16 memory addressing modes (in the most complex case).
However, not all variations of the ARM load and store instructions support
all 16 addressing modes.

C.5.3.1  Register Plus Displacement Addressing Mode

The ARM register plus displacement addressing mode adds a signed 12-bit
displacement value, sign-extended to 32 bits, with the value from a general-
purpose integer register to compute the effective memory address. The Gas
syntax for this addressing mode is as follows:

 [Rn, #displacementValue] // A32
 [Xn, #displacementValue] // A64

where displacementValue is a signed 8-bit expression and Rn represents one
of the A32’s 32-bit general-purpose registers (R0 through R12); Xn repre-
sents one of the A64’s 64-bit general-purpose registers (X0 through X30).

The ldr (load register) instruction is a typical load instruction that
allows the register plus displacement addressing mode. It fetches a 32-bit
word from memory and then copies the result into a destination register.
For example, this particular instruction loads R3 with the (32-bit) word
found in memory at the address held in R5 plus 4:

ldr R3, [R5, #4] // A32 instruction

4. You could also logically OR multiple immediate constants together using two to four differ-
ent instructions. This might be faster than loading a constant from memory if memory access
is sufficiently slow. Keep in mind, however, that those instructions each consume 4 bytes of
memory, which the CPU must fetch from memory to execute (though they’ll likely be in the
instruction cache/pipeline).

ARM Assembly for the HLL Programmer 11

This particular instruction loads W3 with the (32-bit) word found in
memory at the address held in X5 plus 4:

ldr W3, [X5, #4] // A64 instruction

C.5.3.2  Preindexed Addressing with Write-Back

Most load and store instructions (like lbr) on the ARM support a special
update form. When you’re using the register plus displacement address-
ing mode, these instructions work just like the standard load instructions
except that they update the base address register with the final effective
address. Such instructions specify the ! (exclamation point) after the address-
ing mode. For example, this instruction not only copies the value from
memory location [R5 + 4]5 into R3, but also adds 4 to R5:

ldr R3, [R5, #4]! // A32 instruction

This instruction copies the value from memory location [X5 + 4] into
W3 and adds 4 to X5:

ldr W3, [X5, #4]! // A64 instruction

C.5.3.3  Post-Indexed Addressing with Write-Back

Post-indexed addressing is another update form. When you’re using the
register plus displacement addressing mode, these instructions work
just like the standard load instructions except that they update the base
address register with the final effective address after fetching the value
from memory. For example, this instruction not only copies the value from
memory location [R5] into R3, but also adds 4 to R5 (after copying the
value from location [R5] into R3).

ldr R3, [R5], #4 // A32 instruction

This instruction copies the value from memory location [X5] into W3
and adds 4 to X5 (after copying the value from location [X5] into W3).

ldr W3, [X5], #4 // A64 instruction

C.5.3.4  Scaled-Index Addressing Mode

The ARM also supports a scaled-index addressing mode, which uses one
general-purpose register to hold a base address and a second general-
purpose register to hold an index from that base address. In addition, a
small immediate constant specifies a left shift factor for the index register

5. The brackets ([]) denote indirection. That is, [R5 + 4] represents the memory at the
address specified by the contents of R5 plus 4.

12 Appendix C

(a maximum of 31 bits). With Gas, you specify the shift factor using an
operand of the form asl #n, where n is the number of bits to shift the index
register. The ldr instruction, for example, uses the following syntax:

ldr Rd, [Rb, Rx, asl #n] // A32 syntax
ldr Wd, [Xb, Xx, asl #n] // A64 syntax (32-bit destination)
ldr Xd, [Xb, Xx, asl #n] // A64 syntax (64-bit destination)

Rd, Wd, or Xd is the destination register, Rb or Xb is the base register, Rx or
Xx is the index register, and #n is the scaling factor.

Examples:

ldr R3, [R5, R6, asl #2] // A32 instruction
ldr W3, [X5, X6, asl #2] // A64 32-bit instruction
ldr X3, [X5, X6, asl #2] // A64 64-bit instruction

The A32 example loads R3 with the 32-bit word found at the memory
address [R5 + R6 × 4]. The A64 examples load W3 or X3 with the 32-bit
word or 64-bit double word found at the memory address [X5 + X6 × 4].

There are also pre- and post-update forms of the indexed addressing
mode, which update the base register with the sum of the base and index
registers after computing the effective memory address. The index regis-
ter’s value is unaffected by the update form of the instruction. Here’s the
A32 syntax for the pre- and post-update forms:

ldr Rd, [Rb, Rx, asl #n]! // Pre-update form
ldr Rd, [Rb], Rx, asl #n // Post-update form

The pre-update form computes Rb = Rb + Rx × 2n, stores the result into
Rb, and then fetches the memory location at the new value of Rb. The post-
update form fetches the value from the location pointed at by Rb and then
computes Rb = Rb + Rx × 2n.

The A64 syntax for the pre- and post-update forms is:

ldr Xd, [Xb, Xx, asl #n]! // Pre-update form (64-bit operation)
ldr Wd, [Xb], Xx, asl #n // Post-update form (32-bit operation)

The pre-update form computes Xb = Xb + Xx × 2n, stores the result into
Xb, and then fetches the memory location at the new value of Xb. The post-
update form fetches the value from the location pointed at by Xb and then
computes Xb = Xb + Xx × 2n.

C.6  Declaring Data in Assembly Language
The ARM CPU provides only a few low-level machine data types on which
individual machine instructions can operate:

•	 Bytes that hold arbitrary 8-bit values

•	 Words that hold arbitrary 16-bit values (halfwords in ARM terminology)

ARM Assembly for the HLL Programmer 13

•	 Double words that hold arbitrary 32-bit values (words in ARM
terminology)

•	 Quad words that hold 64-bit values (double words in ARM terminology)

•	 Single-precision floating-point values (32-bit single floating-point values)

•	 Double-precision, 64-bit, floating-point values

N O T E 	 Although the standard ARM terminology is byte, halfword, word, and double
word for 8-, 16-, 32-, and 64-bit integer values, outside of this appendix this book
uses the x86 terminology to avoid confusion with the 80x86 code.

Although the ARM supports 128-bit quad-word floating-point values,
Gas does not provide a directive to encode 128-bit floating-point constants.
You’ll have to convert these values to their equivalent bit patterns and emit
them using other directives.

Gas uses the .byte directive in a .data section to declare a byte variable,
like so:

variableName: .byte 0

Gas doesn’t provide an explicit form for creating uninitialized vari-
ables, so you just supply a 0 operand for them. Here is an actual byte vari-
able declaration in Gas:

IntializedByte: .byte 5

Gas also does not provide an explicit directive for declaring an array
of byte objects, but you can use the .rept/.endr directives to create multiple
copies of the .byte directive as follows:

variableName:
 .rept sizeOfBlock
 .byte 0
 .endr

You can also supply a comma-delimited list of values to initialize the
array with different values.

Here are a couple of array declaration examples in Gas:

 .section .data ; Variables go in this section
InitializedArray0: ; Creates an array with elements 5,5,5,5
 .rept 4
 .byte 5
 .endr

InitializedArray1:
 .byte 0,1,2,3,4,5

14 Appendix C

For 16-bit objects, Gas uses the .short directive. Other than the size of the
object these directives declare, their use is identical to the byte declarations:

 .section .data
GasWordVar: .short 0

; Create an array of four words, all initialized to 0:

GasWordArray:
 .rept 4
 .short 0
 .endr

; Create an array of 16-bit words, initialized with
; the values 0, 1, 2, 3, and 4:

GasWordArray2: .short 0,1,2,3,4

For 32-bit objects, Gas uses the .long or .word directive:

 .section .data
GasDWordVar: .long 0

; Create an array with four double-word values
; initialized to 0:

GasDWordArray:
 .rept 4
 .long 0
 .endr

; Create an array of double words initialized with
; the values 0, 1, 2, 3, 4:

GasDWordArray2: .long 0,1,2,3,4

For 64-bit objects, Gas uses the .quad or .xword directive:

 .section .data
GasQWordVar: .xword 0

; Create an array with four xword values
; initialized to 0:

GasQWordArray:
 .rept 4
 .xword 0
 .endr

; Create an array of xwords initialized with
; the values 0, 1, 2, 3, 4:

GasQWordArray2: .xword 0,1,2,3,4

ARM Assembly for the HLL Programmer 15

For floating-point values, Gas uses the .single and .double directives
to reserve storage for an IEEE-format floating-point value (32 or 64 bits,
respectively). Because the ARM CPU does not support arbitrary immediate
floating-point constants, if you need to reference a floating-point constant
from a machine instruction, you’ll need to place that constant in a memory
variable and access that memory variable instead. Here are some examples:

 .section .data
GasSingleVar: .single 0.0
GasDoubleVar: .double 1.0

; Create an array with four single-precision values
; initialized to 2.0:

GasSingleArray:
 .rept 4
 .single 2.0
 .endr

; Create an array of double-precision values initialized with
; the values 0.0, 1.1, 2.2, 3.3, and 4.4:

GasDWordArray2: .double 0.0,1.1,2.2,3.3,4.4

Note that GCC and other compilers often use the .word directive to emit
floating-point constants. The integer operands that GCC emits will have the
same bit patterns as the floating-point constants you specify in the C/C++
(or other HLL) code.

C.7  Specifying Operand Sizes in Assembly Language
ARM instructions generally operate only on 32-bit or 64-bit data. Unlike
CISC processors, individual ARM instructions don’t operate on various
data types. The add instruction, for example, operates only on 32-bit values
(except on 64-bit implementations of the ARM, where it operates on 64-bit
values when in 64-bit mode). Generally, this isn’t a problem. If two ARM
registers contain 8-bit values, you’ll get the same result by adding those two
32-bit registers together that you’d get if they were 8-bit registers, if you con-
sider only the LO 8 bits of the sum.

Memory accesses, however, are a different matter. When reading and
(especially) writing data in memory, it’s important that the CPU access only
the desired data size. Therefore, the ARM provides some size-specific load
and store instructions that specify byte, 16-bit halfword, 32-bit word, and
(for the A64) 64-bit double word sizes.

C.8  The Minimal Instruction Set
Although the ARM CPU family supports hundreds of instructions, few
compilers actually use all of them. This is because many instructions have

16 Appendix C

become obsolete over time as newer instructions have emerged. Some
instructions, such as ARM’s NEON instructions, simply don’t correspond to
functions you’d normally perform in an HLL. As a result, compilers rarely
generate these types of machine instructions, which generally appear only
in handwritten assembly language programs. Fortunately, this means you
don’t need to learn the entire ARM instruction set in order to study com-
piler output, but only the handful that compilers actually emit.

This section describes the A32 32-bit instruction set. The 64-bit instruc-
tion set is very similar; the main difference is the absence of condition
instruction execution (except for branches), and support for 64-bit oper-
ands and a larger register file (32 general-purpose registers rather than 16).
If all you need to do is read an assembly language listing rather than write
an assembly language program, the relevant differences are mainly in the
register sets for the two machines. While there are a few additional instruc-
tions on the 64-bit variants (and a few 32-bit instructions that have disap-
peared in 64-bit mode), if you can read 32-bit ARM assembly you’ll largely
be able to read 64-bit ARM assembly.

C.8.1  Data Manipulation Instructions
There are 16 ARM data manipulation instructions:

•	 AND (logical AND)

•	 EOR (exclusive-or)

•	 SUB (subtraction)

•	 RSB (reverse subtraction)

•	 ADD (addition)

•	 ADC (add with carry)

•	 SBC (subtract with carry)

•	 RSC (reverse subtract with carry)

•	 TST (test bits using logical AND)

•	 TEQ (test bits using logical exclusive-OR)

•	 CMP (compare)

•	 CMN (compare negated)

•	 ORR (logical OR)

•	 MOV (copy one operand to another)

•	 BIC (bit clear)

•	 MVN (move, negated/inverted)

Most of these instructions have three or four operands. The generic
instruction forms are as follows:

instr Rd, Rs1, Rs2
Computes Rd = Rs1 op Rs2, where op corresponds to the operation per-
formed by instr.

ARM Assembly for the HLL Programmer 17

instr Rd, Rs1, #imm8
Computes Rd = Rs1 op imm8, where op corresponds to the operation per-
formed by instr. The imm8 operand is a 32-bit constant that can be
encoded using the ARM 12-bit rotated immediate format (see “The
Immediate Addressing Mode” on page 9).

instr Rd, Rs1, Rs2, ASR #n
Computes Rd = Rs1 op (Rs2 ASR n), where op corresponds to the opera-
tion performed by instr. ASR is the arithmetic shift right operation
(Rs2’s value is shifted to the right n bits via an ASR operation).

instr Rd, Rs1, Rs2, ASR Rs3
Computes Rd = Rs1 op (Rs2 ASR Rs3), where op corresponds to the opera-
tion performed by instr. ASR is the arithmetic shift right operation
(Rs2’s value is shifted to the right the number of bit positions specified
by Rs3 via an ASR operation).

instr Rd, Rs1, Rs2, LSL #n
Computes Rd = Rs1 op (Rs2 LSL n), where op corresponds to the operation
performed by instr. LSL is the logical shift left operation (Rs2’s value is
shifted to the left n bits via an LSL operation).

instr Rd, Rs1, Rs2, LSL Rs3
Computes Rd = Rs1 op (Rs2 LSL Rs3), where op corresponds to the opera-
tion performed by instr. LSL is the logical shift left operation (Rs2’s
value is shifted to the left the number of bit positions specified by Rs3
via an LSL operation).

instr Rd, Rs1, Rs2, LSR #n
Computes Rd = Rs1 op (Rs2 LSR n), where op corresponds to the operation
performed by instr. LSR is the logical shift right operation (Rs2’s value
is shifted to the right n bits via an LSR operation).

instr Rd, Rs1, Rs2, LSR Rs3
Computes Rd = Rs1 op (Rs2 LSR Rs3), where op corresponds to the opera-
tion performed by instr. LSR is the logical shift right operation (Rs2’s
value is shifted to the right the number of bit positions specified by Rs3
via an LSR operation).

instr Rd, Rs1, Rs2, ROR #n
Computes Rd = Rs1 op (Rs2 ROR n), where op corresponds to the opera-
tion performed by instr. ROR is the logical rotate right operation (Rs2’s
value is rotated to the right n bits via an ROR operation).

instr Rd, Rs1, Rs2, ROR Rs3
Computes Rd = Rs1 op (Rs2 ROR Rs3), where op corresponds to the opera-
tion performed by instr. ROR is the logical rotate right operation (Rs2’s
value is rotated to the right the number of bit positions specified by Rs3
via an ROR operation).

18 Appendix C

instr Rd, Rs1, Rs2, RRX #1
Computes Rd = Rs1 op (Rs2 RRX 1), where op corresponds to the opera-
tion performed by instr. RRX is the extended logical rotate right
operation through carry (Rs2’s value is rotated to the right 1 bit with
bit 0 going into the carry flag and the previous contents of the carry
flag going into bit 31). Note that the RRX operand must always be the
immediate constant #1.

In the preceding examples, the instruction computes some value based
on the value of Rs1 (the first operand), and the value of Rs2 and the optional
shift operand (the immediate value), which together constitute the second
operand. The instruction typically stores the result into the destination oper-
and. The fourth operand is simply a (shift) modifier to the third operand,
forming a single value.

To demonstrate, Table C-2 provides explicit examples of all the oper-
and forms for the ARM adc (add with carry) instruction.

Table C-2: Gas Syntax for 32-bit adc

Instruction Description

adc Rd, Rs1, Rs2
adcs Rd, Rs1, Rs2

Rd := Rs1 + Rs2 + carry
d, s1, and s2 are register numbers in the range 0..15.
The adcs form updates the processor status bits based on
the instruction results.

adc Rd, Rs1, #imm8
adcs Rd, Rs1, #imm8

Rd := Rs1 + imm8 + carry
d and s1 are register numbers in the range 0..15. The
imm8 operand is a 32-bit constant that can be encoded
using the ARM 12-bit rotated immediate format (see “The
Immediate Addressing Mode” on page 9).
The adcs form updates the processor status bits based on
the instruction results.

adc Rd, Rs1, Rs2, ASR #n
adcs Rd, Rs1, Rs2, ASR #n

Rd := Rs1 + (Rs2 ASR n) + carry
d, s1, and s2 are register numbers in the range 0..15.
n is a constant in the range 1..32.
ASR is the arithmetic shift right operation (Rs2’s value is
shifted to the right n bits using an ASR operation).
The adcs form updates the processor status bits based on
the instruction results.

adc Rd, Rs1, Rs2, ASR Rs3
adcs Rd, Rs1, Rs2, ASR Rs3

Rd := Rs1 + (Rs2 ASR Rs3) + carry
d, s1, s2, and s3 are register numbers in the range 0..15.
Rs3 must contain a value in the range 1..32.
ASR is the arithmetic shift right operation (Rs2’s value is
shifted to the right the number of bits specified by Rs3
using an ASR operation).
The adcs form updates the processor status bits based on
the instruction results.

adc Rd, Rs1, Rs2, LSL #n
adcs Rd, Rs1, Rs2, LSL #n

Rd := Rs1 + (Rs2 LSL n) + carry
d, s1, and s2 are register numbers in the range 0..15.
n is a constant in the range 0..31.
LSL is the logical shift left operation (Rs2’s value is shifted
to the left n bits using an LSL operation).
The adcs form updates the processor status bits based on
the instruction results.

(continued)

ARM Assembly for the HLL Programmer 19

Table C-2: Gas Syntax for 32-bit adc (continued)

Instruction Description

adc Rd, Rs1, Rs2, LSL Rs3
adcs Rd, Rs1, Rs2, LSL Rs3

Rd := Rs1 + (Rs2 LSL Rs3) + carry
d, s1, s2, and s3 are register numbers in the range 0..15.
Rs3 must contain a value in the range 0..31.
LSL is the logical shift left operation (Rs2’s value is shifted
to the left the number of bits specified by Rs3 using an LSL
operation).
The adcs form updates the processor status bits based on
the instruction results.

adc Rd, Rs1, Rs2, LSR #n
adcs Rd, Rs1, Rs2, LSR #n

Rd := Rs1 + (Rs2 LSR n) + carry
d, s1, and s2 are register numbers in the range 0..15.
n is a constant in the range 1..32.
LSR is the logical shift right operation (Rs2’s value is
shifted to the right n bits using an LSR operation).
The adcs form updates the processor status bits based on
the instruction results.

adc Rd, Rs1, Rs2, LSR Rs3
adcs Rd, Rs1, Rs2, LSR Rs3

Rd := Rs1 + (Rs2 LSR Rs3) + carry
d, s1, s2, and s3 are register numbers in the range 0..15.
Rs3 must contain a value in the range 1..32.
LSR is the logical shift right operation (Rs2’s value is
shifted to the right the number of bits specified by Rs3
using an LSR operation).
The adcs form updates the processor status bits based on
the instruction results.

adc Rd, Rs1, Rs2, ROR #n
adcs Rd, Rs1, Rs2, ROR #n

Rd := Rs1 + (Rs2 ROR n) + carry
d, s1, and s2 are register numbers in the range 0..15.
n is a constant in the range 1..31.
ROR is the logical rotate right operation (Rs2’s value is
rotated to the right n bits using an ROR operation).
The adcs form updates the processor status bits based on
the instruction results.

adc Rd, Rs1, Rs2, ROR Rs3
adcs Rd, Rs1, Rs2, ROR Rs3

Rd := Rs1 + (Rs2 ROR Rs3) + carry
d, s1, s2, and s3 are register numbers in the range 0..15.
Rs3 must contain a value in the range 1..32.
ROR is the logical rotate right operation (Rs2’s value is
rotated to the right the number of bits specified by Rs3
using an ROR operation).
The adcs form updates the processor status bits based on
the instruction results.

adc Rd, Rs1, Rs2, RRX #1
adcs Rd, Rs1, Rs2, RRX #1

Rd := Rs1 + (Rs2 RRX 1) + carry
d, s1, and s2 are register numbers in the range 0..15.
n is a constant in the range 1..31.
RRX is the extended rotate right operation (Rs2’s value is
rotated to the right 1 bit, with bit 0 going into the carry
flag and the old carry flag value going into bit 31).
The adcs form updates the processor status bits based on
the instruction results.

The and, eor, sub, rsb, add, sbc, rsc, orr, and bic instructions all take the
same forms as the adc instruction with the exception of their operations,
which are described in Table C-3. As with adc, these instructions allow an
s suffix, which updates the condition code bits after the execution of the
instruction (without the suffix, these instructions do not affect the condi-
tion code flags).

20 Appendix C

Table C-3: Data Manipulation Instructions: and, eor, sub, rsb, add, sbc, rsc, orr, and bic

Instruction Description

and, ands Rd is set to bitwise logical AND of Rs1 and operand 2.
eor, eors Rd is set to bitwise logical exclusive-OR of Rs1 and

operand 2.
sub, subs Rd is set to Rs1 – operand 2.
rsb, rsbs Rd is set to operand 2 – Rs1.
add, adds Rd is set to Rs1 + operand 2.
sbc, sbcs Rd is set to Rs1 – operand 2 - not(carry).
rsc, rscs Rd is set to operand 2 – Rs1 – not(carry).
orr, orrs Rd is set to bitwise logical OR of Rs1 and operand 2.
bic, bics Rd is set to bitwise logical AND of Rs1 and not(operand 2).

The ARM cmp, cmn, tst, and teq instructions do not produce a destination
value; instead, they update only the condition code flags (listed in Table C-4).
Accordingly, these instructions don’t support the s suffix. Furthermore, they
accept only two source operands, as they don’t update a destination register.

Table C-4: Gas Syntax for 32-bit cmp Instruction

Instruction Description

cmp Rd, Rs1, Rs2
cmp Rd, Rs1, Rs2

Rd := Rs1 to Rs2 and updates the condition code flags.
s1 and s2 are register numbers in the range 0..15.

cmp Rd, Rs1, #imm8
cmp Rd, Rs1, #imm8

Rd := Rs1 to imm8 and updates the condition code flags.
s1 is a register number in the range 0..15. The imm8
operand is a 32-bit constant that can be encoded using
the ARM 12-bit rotated immediate format (see ““The
Immediate Addressing Mode” on page 9).

cmp Rs1, Rs2, ASR #n
cmp Rs1, Rs2, ASR #n

Compares Rs1 to (Rs2 ASR n) and updates the condition
code flags.
s1 and s2 are register numbers in the range 0..15.
n is a constant in the range 1..32.
ASR is the arithmetic shift right operation (Rs2’s value is
shifted to the right n bits using an ASR operation).

cmp Rs1, Rs2, ASR Rs3
cmp Rs1, Rs2, ASR Rs3

Compares Rs1 to (Rs2 ASR Rs3) and updates the condition
code flags.
s1, s2, and s3 are register numbers in the range 0..15.
Rs3 must contain a value in the range 1..32.
ASR is the arithmetic shift right operation (Rs2’s value is
shifted to the right the number of bits specified by Rs3
using an ASR operation).

cmp Rs1, Rs2, LSL #n
cmp Rs1, Rs2, LSL #n

Compares Rs1 to (Rs2 LSL n) and updates the condition
code flags.
s1 and s2 are register numbers in the range 0..15.
n is a constant in the range 0..31.
LSL is the logical shift left operation (Rs2’s value is shifted
to the left n bits using an LSL operation).

(continued)

ARM Assembly for the HLL Programmer 21

Table C-4: Gas Syntax for 32-bit cmp Instruction (continued)

Instruction Description

cmp Rs1, Rs2, LSL Rs3
cmp Rs1, Rs2, LSL Rs3

Compares Rs1 to (Rs2 LSL Rs3) and updates the condition
code flags.
s1, s2, and s3 are register numbers in the range 0..15.
Rs3 must contain a value in the range 0..31.
LSL is the logical shift left operation (Rs2’s value is shifted
to the left the number of bits specified by Rs3 using an LSL
operation).

cmp Rs1, Rs2, LSR #n
cmp Rs1, Rs2, LSR #n

Compares Rs1 to (Rs2 LSR n) and updates the condition
code flags.
s1 and s2 are register numbers in the range 0..15.
n is a constant in the range 1..32.
LSR is the logical shift right operation (Rs2’s value is
shifted to the right n bits using an LSR operation).

cmp Rs1, Rs2, LSR Rs3
cmp Rs1, Rs2, LSR Rs3

Compares Rs1 to (Rs2 LSR Rs3) and updates the condition
code flags.
s1, s2, and s3 are register numbers in the range 0..15.
Rs3 must contain a value in the range 1..32.
LSR is the logical shift right operation (Rs2’s value is
shifted to the right the number of bits specified by Rs3
using an LSR operation).

cmp Rs1, Rs2, ROR #n
cmp Rs1, Rs2, ROR #n

Compares Rs1 to (Rs2 ROR n) and updates the condition
code flags.
s1 and s2 are register numbers in the range 0..15.
n is a constant in the range 1..31.
ROR is the logical rotate right operation (Rs2’s value is
rotated to the right n bits using an ROR operation).

cmp Rs1, Rs2, ROR Rs3
cmp Rs1, Rs2, ROR Rs3

Compares Rs1 to (Rs2 ROR Rs3) and updates the
condition code flags.
s1, s2, and s3 are register numbers in the range 0..15.
Rs3 must contain a value in the range 1..32.
ROR is the logical rotate right operation (Rs2’s value is
rotated to the right the number of bits specified by Rs3
using an ROR operation).

cmp Rs1, Rs2, RRX #1
cmp Rs1, Rs2, RRX #1

Compares Rs1 to (Rs2 RRX 1) and updates the condition
code flags.
s1 and s2 are register numbers in the range 0..15.
n is a constant in the range 1..31.
RRX is the extended rotate right operation (Rs2’s value is
rotated to the right 1 bit, with bit 0 going into the carry
flag and the old carry flag value going into bit 31).

The cmp instruction performs the same operation as a sub instruction
except that cmp doesn’t store a result into a destination register.

Table C-5 describes the cmn, tst, and teq instructions, which use the
same syntax as cmp.

22 Appendix C

Table C-5: Data Manipulation Instructions: cmn, tst, and teq

Instruction Description

CMN Compare negated value. Compares Rs1 to a negated
copy of operand 2 and updates the flags. Note that this
is equivalent to adding Rs1 to operand 2 and updating
the flags.

TST Computes the logical AND of Rs1 and operand 2 and
updates the flags.

TEQ Computes the logical exclusive-OR of Rs1 and operand 2
and updates the flags.

The final two data manipulation instructions, mov and mvn, also support
only two operands. However, these instructions have a destination register
and an operand 2, dropping the Rs1 operand. These instructions copy data
from operand 2 to the destination register. The difference between the two
instructions is that the mvn (move negated) instruction logically inverts the
bits of operand 2’s value before copying the value into the destination regis-
ter. The syntax for these instructions appears in Table C-6.

Table C-6: Gas Syntax for 32-bit mov and mvn Instructions

Instruction Description

mov Rd, Rs2
movs Rd, Rs2
mvn Rd, Rs2
mvns Rd, Rs2

Rd := Rs2 // mov
Rd := not Rs2 // mvn
d and s2 are register numbers in the range 0..15.
The movs and mvns forms update the processor status bits
based on the instruction results.

mov Rd, #imm8
movs Rd, #imm8
mvn Rd, #imm8
mvns Rd, #imm8

Rd := imm8 // mov
Rd := not imm8 // mvn
d is a register number in the range 0..15. The imm8
operand is a 32-bit constant that can be encoded using
the ARM 12-bit rotated immediate format (see ““The
Immediate Addressing Mode” on page 9).
The movs and mvns forms update the processor status bits
based on the instruction results.

mov Rd, Rs2, ASR #n
movs Rd, Rs2, ASR #n
mvn Rd, Rs2, ASR #n
mvns Rd, Rs2, ASR #n

Rd := (Rs2 ASR n) // mov
Rd := not (Rs2 ASR n) // mvn
d and s2 are register numbers in the range 0..15.
n is a constant in the range 1..32.
ASR is the arithmetic shift right operation (Rs2’s value is
shifted to the right n bits using an ASR operation).
The movs and mvns forms update the processor status bits
based on the instruction results.

mov Rd, Rs2, ASR Rs3
movs Rd, Rs2, ASR Rs3
mvn Rd, Rs2, ASR Rs3
mvns Rd, Rs2, ASR Rs3

Rd := (Rs2 ASR Rs3) // mov
Rd := not (Rs2 ASR Rs3) // mvn
d, s2, and s3 are register numbers in the range 0..15.
Rs3 must contain a value in the range 1..32.
ASR is the arithmetic shift right operation (Rs2’s value is
shifted to the right the number of bits specified by Rs3
using an ASR operation).
The movs and mvns forms updates the processor status bits
based on the instruction results.

(continued)

ARM Assembly for the HLL Programmer 23

Table C-6: Gas Syntax for 32-bit mov and mvn Instructions (continued)

Instruction Description

mov Rd, Rs2, LSL #n
movs Rd, Rs2, LSL #n
mvn Rd, Rs2, LSL #n
mvns Rd, Rs2, LSL #n

Rd := (Rs2 LSL n) // mov
Rd := not (Rs2 LSL n) // mvn
d and s2 are register numbers in the range 0..15.
n is a constant in the range 0..31.
LSL is the logical shift left operation (Rs2’s value is shifted
to the left n bits using an LSL operation).
The movs and mvns forms update the processor status bits
based on the instruction results.

mov Rd, Rs2, LSL Rs3
movs Rd, Rs2, LSL Rs3
mvn Rd, Rs2, LSL Rs3
mvns Rd, Rs2, LSL Rs3

Rd := (Rs2 LSL Rs3) // mov
Rd := not (Rs2 LSL Rs3) // mvn
d, s2, and s3 are register numbers in the range 0..15.
Rs3 must contain a value in the range 0..31.
LSL is the logical shift left operation (Rs2’s value is shifted
to the left the number of bits specified by Rs3 using an LSL
operation).
The movs and mvns forms update the processor status bits
based on the instruction results.

mov Rd, Rs2, LSR #n
movs Rd, Rs2, LSR #n
mvn Rd, Rs2, LSR #n
mvns Rd, Rs2, LSR #n

Rd := (Rs2 LSR n) // mov
Rd := not (Rs2 LSR n) // mvn
d and s2 are register numbers in the range 0..15.
n is a constant in the range 1..32.
LSR is the logical shift right operation (Rs2’s value is
shifted to the right n bits using an LSR operation).
The movs and mvns forms update the processor status bits
based on the instruction results.

mov Rd, Rs2, LSR Rs3
movs Rd, Rs2, LSR Rs3
mvn Rd, Rs2, LSR Rs3
mvns Rd, Rs2, LSR Rs3

Rd := (Rs2 LSR Rs3) // mov
Rd := not (Rs2 LSR Rs3) // mvn
d, s2, and s3 are register numbers in the range 0..15.
Rs3 must contain a value in the range 1..32.
LSR is the logical shift right operation (Rs2’s value is
shifted to the right the number of bits specified by Rs3
using an LSR operation).
The movs and mvns forms update the processor status bits
based on the instruction results.

mov Rd, Rs2, ROR #n
movs Rd, Rs2, ROR #n
mvn Rd, Rs2, ROR #n
mvns Rd, Rs2, ROR #n

Rd := (Rs2 ROR n) // mov
Rd := not (Rs2 ROR n) // mvn
d, and s2 are register numbers in the range 0..15.
n is a constant in the range 1..31.
ROR is the logical rotate right operation (Rs2’s value is
rotated to the right n bits using an ROR operation).
The movs and mvns forms update the processor status bits
based on the instruction results.

mov Rd, Rs2, ROR Rs3
movs Rd, Rs2, ROR Rs3
mvn Rd, Rs2, ROR Rs3
mvns Rd, Rs2, ROR Rs3

Rd := (Rs2 ROR Rs3) // mov
Rd := not (Rs2 ROR Rs3) // mvn
d, s2, and s3 are register numbers in the range 0..15.
Rs3 must contain a value in the range 1..32.
ROR is the logical rotate right operation (Rs2’s value is
rotated to the right the number of bits specified by Rs3
using an ROR operation).
The movs and mvns forms update the processor status bits
based on the instruction results.

(continued)

24 Appendix C

Table C-6: Gas Syntax for 32-bit mov and mvn Instructions (continued)

Instruction Description

mov Rd, Rs2, RRX #1
movs Rd, Rs2, RRX #1
mvn Rd, Rs2, RRX #1
mvns Rd, Rs2, RRX #1

Rd := (Rs2 RRX 1) // mov
Rd := not (Rs2 RRX 1) // mvn
d, s1, and s2 are register numbers in the range 0..15.
n is a constant in the range 1..31.
RRX is the extended rotate right operation (Rs2’s value is
rotated to the right 1 bit, with bit 0 going into the carry
flag and the old carry flag value going into bit 31).
The movs and mvns forms update the processor status bits
based on the instruction results.

C.8.2  Conditional Suffixes for Instructions
By default, the data manipulation instructions always execute when the
CPU encounters them in the code stream. However, every data manipula-
tion instruction supports 16 variants, 15 of which execute only under cer-
tain conditions. The CPU condition code flags determine those conditions
(see Table C-7).

Table C-7: Conditional Data Manipulation Instruction Suffixes

Condition code setting(s) Instruction suffix Meaning

Z=1 eq Execute if equal (or 0). Instruction
executes if zero flag is set.

Z=0 ne Execute if not equal (or nonzero).
Instruction executes if zero flag is clear.

C=1 cs or hs Execute if carry set/higher or same
(unsigned greater than or equal).

C=0 cc or lo Execute if carry clear/lower (unsigned
less than).

N=1 mi Execute if minus (HO bit of result
was set).

N=0 pl Execute if plus or 0 (HO bit of result
was clear).

V=1 vs Execute if signed overflow.
V=0 vc Execute if no signed overflow.
C=1 && Z=0 hi Execute if higher (unsigned greater than).
C=0 || Z=1 ls Execute if lower or same (unsigned less

than or equal).
N==V ge Execute if (signed) greater than or equal.
N!=V lt Execute if (signed) less than.
Z==0 && N==V gt Execute if (signed) greater than.
Z==1 && N!=V le Execute if (signed) less than or equal.

n/a AL (default) Always execute (AL suffix is optional;
always execute is the default condition).

ARM Assembly for the HLL Programmer 25

Consider the instruction moveq. Upon encountering this instruction,
the CPU tests the zero flag. If the zero flag is clear, the CPU skips over this
instruction without executing it. If the zero flag is set, the CPU executes
the instruction as if the eq suffix weren’t present.

Note that encoding these 15 different conditions into the data manipu-
lation instructions consumes 4 bits in the instructions’ opcodes. In the
64-bit A64 processors, those bits were reclaimed for other purposes (such
as 64-bit operations). Therefore, conditionally executed instructions (other
than branches) are available only in 32-bit programs.

C.8.3  Multiply Instructions
The ARM instruction set includes several multiply instructions that multi-
ply the values in two registers and store the result in a destination register.
These instructions appear in Table C-8.

Table C-8: Gas Syntax for 32-Bit Multiply Instructions

Instruction Description

mul Rd, Rs1, Rs2
muls Rd, Rs1, Rs2

Rd := Rs1 × Rs2 (signed or unsigned).
d, s1, and s2 are register numbers in the range 0..15.
The muls form updates the processor status bits based on
the instruction results.

mla Rd, Rs1, Rs2, Rs3
mlas Rd, Rs1, Rs2, Rs3

Rd := Rs1 × Rs2 + Rs3 (signed or unsigned).
d, s1, s2, and s3 are register numbers in the range 0..15.
The mlas form updates the processor status bits based on
the instruction results.

umull Rdhi, Rdlo, Rs1, Rs2
umulls Rdhi, Rdlo, Rs1, Rs2

(Rdhi:Rdlo) := Rs1 × Rs2 (unsigned)
dhi, dlo, s1, and s2 are register numbers in the range
0..15.
Rdhi will hold the upper 32 bits of the result; Rdlo will
hold the lower 32 bits of the result.
The umulls form updates the processor status bits based
on the instruction results.

umaal Rdhi, Rdlo, Rs1, Rs2
umaals Rdhi, Rdlo, Rs1, Rs2

(Rdhi, Rdlo) := Rs1 × Rs2 + (Rdhi:Rdlo) (unsigned)
dhi, dlo, s1, and s2 are register numbers in the range
0..15.
Rdhi will hold the upper 32 bits of the result; Rdlo will
hold the lower 32 bits of the result.
The umaals form updates the processor status bits based
on the instruction results.

smull Rdhi, Rdlo, Rs1, Rs2
smulls Rdhi, Rdlo, Rs1, Rs2

(Rdhi:Rdlo) := Rs1 × Rs2 (signed)
dhi, dlo, s1, and s2 are register numbers in the range
0..15.
Rdhi will hold the upper 32 bits of the result; Rdlo will
hold the lower 32 bits of the result.
The smulls form updates the processor status bits based
on the instruction results.

(continued)

26 Appendix C

Table C-8: Gas Syntax for 32-Bit Multiply Instructions (continued)

Instruction Description

smaal Rdhi, Rdlo, Rs1, Rs2
smaals Rdhi, Rdlo, Rs1, Rs2

(Rdhi:Rdlo) := Rs1 × Rs2 + (Rdhi:Rdlo) (signed)
dhi, dlo, s1, and s2 are register numbers in the range
0..15.
Rdhi will hold the upper 32 bits of the result; Rdlo will
hold the lower 32 bits of the result.
The smaals form updates the processor status bits based
on the instruction results.

The 64-bit ARM instruction set provides some additional forms of the
multiply instruction. See the ARM documentation for more details.

Note that the base 32-bit ARM instruction set does not include integer
divide or remainder instructions. Applications must implement the divi-
sion/modulo operations using software functions. The 64-bit ARM instruc-
tion set does provide signed and unsigned division operations; see the ARM
documentation for more details.

C.8.4  Branch Instructions
There are two basic ARM branch instructions: b (branch) and bl (branch
and link). Both instructions have a single label operand that specifies a
destination location that must be within about ±32MB from the current
instruction (actually, from about 8 to 12 bytes after the current instruction,
due to issues with the pipeline on the ARM CPU).

The b instruction simply transfers control to the target location by add-
ing the 24-bit offset (shifted to the right by 2 bits) encoded into the instruc-
tion to the PC register (R15). This is a standard unconditional branch on
the ARM processor.

On both the 32-bit (A32) and 64-bit (A64) architectures, the branch
instruction allows conditional suffixes (see “Conditional Suffixes for
Instructions” on page 24). For example, the beq label instruction trans-
fers control to label if and only if the zero flag is set; if the zero flag is clear,
control falls through to the next instruction after the beq instruction.

The bl instruction also transfers control to the target location (the
same way as the b instruction). However, in addition to transferring con-
trol, bl also copies the address of the next instruction (that is, the one fol-
lowing it) into the LR. This is the basis for a subroutine call on the ARM
processor—the LR (R14 on A32; X30 on A64) will hold the subroutine’s
return address upon entry to the subroutine. On the A32, you can return
from the subroutine by copying the LR into the PC register using the fol-
lowing mov instruction:

mov PC, LR // same as mov r15, r14 on A32

On the 64-bit A64, you can use the ret instruction to return from a sub-
routine. Without an operand, the instruction assumes the return address is

ARM Assembly for the HLL Programmer 27

in the LR (X30). You can also specify a different register (X0 through X30)
by specifying the register name as an operand to the ret instruction. The
A64 also has a br instruction (branch through register) that functionally
does the same thing as ret., except ret also tells the ARM branch predic-
tion hardware that you are returning from a subroutine. This helps the
branch prediction hardware run the code a little faster.

Note that the execution of the bl instruction wipes out the old value in
the LR. Nested subroutine calls (that is, calling a subroutine and then hav-
ing that subroutine’s body call a second subroutine) are impossible unless
you explicitly save the value in the LR to memory (specifically, to some sub-
routine return address stack) and return from the subroutine by jumping
indirect via that memory location.

The 32-bit ARM instruction set allows conditional suffixes on the bl
instruction. For example, blmi func calls the specified function (and updates
the LR) if and only if the negative flag was set. If the negative flag was clear,
control falls through to the instruction following the blmi instruction and
the LR’s contents do not change.

The 32-bit ARM instruction set allows you to treat PC as a general-
purpose register. You can move the value of some other register into the
PC using the mov instruction (see the earlier code example). On the 64-bit
ARM, you can do the same thing with the br or ret instructions. The 32-bit
ARM instruction set also allows you to copy the PC register to some other
general-purpose register. Alas, this isn’t directly possible using 64-bit ARM
instructions, though you can use adr Rd, . to do the same thing.

C.8.5  Load and Store Instructions
As mentioned earlier, the ARM processor accesses memory using only load
and store instructions. While the ARM CPU supports several, the primary
ones are ldr (load register) and str (store register). These instructions
require two operands—a register operand and a memory operand—and
have the following syntax (braces indicate optional items and do not appear
in the actual instruction):

ldr{cond}{B|H|SB|SH}{T} Rd, Address
str{cond}{B}{T} Rd, Address

where:

•	 cond represents one of the conditional suffixes (see “Conditional
Suffixes for Instructions” on page 24). If no suffix is present, the
default is always AL.

•	 B|H|SB|SH means that only one (or none) of the suffixes B, H, SB, or SH
may appear in the instruction. B indicates a byte-sized transfer, with
zero extension to 32 bits. H indicates a halfword (16-bit) data transfer
with zero extension to 32 bits. SB indicates a signed byte transfer with
sign extension to 32 bits. Finally, SH indicates a signed halfword (16-bit)
transfer with sign extension to 32 bits.

28 Appendix C

•	 The T suffix is intended for operating system use only. You probably won’t
see this suffix in application code. If it is present, you can ignore it.

•	 d is a register number in the range 0 through 15.

•	 Address is a memory addressing mode (see the following discussion).

Memory addresses (Address) can be any of the following:

•	 The label of a (nearby) variable in memory (for example, ldr r0,
someVar). The label must reference a memory location that is within
±4,096 bytes of the current instruction (PC-relative addressing mode).

•	 A preindexed addressing mode (see “Preindexed Addressing with
Write-Back” on page 11).

•	 A post-indexed addressing mode (see “Post-Indexed Addressing with
Write-Back” on page 11).

•	 A scaled-indexed addressing mode (see “Scaled-Index Addressing
Mode” on page 11).

The ldr instruction copies the (byte or 32-bit word) data value from the
specified memory address into register Rd. The ldrb instruction copies the byte
at the specified address to the LO 8 bits of Rd and then zeros out the upper
24 bits of Rd. The ldrsb instruction copies the byte at the specified address to
the LO 8 bits of Rd and then sign-extends this value throughout the upper
24 bits of Rd. The ldrh instruction copies the 16-bit halfword at the specified
address to the LO 16 bits of Rd and then zeros out the upper 16 bits of Rd.
The ldrsh instruction copies the 16-bit halfword at the specified address to
the LO 16 bits of Rd and then sign-extends this value throughout the upper
16 bits of Rd.

If a condition suffix appears immediately after the ldr or str (and
before the B, SB, H, SH, and T suffixes), the CPU executes only the load or
store instruction if the specified condition is true. Note that these instruc-
tions do not affect the condition code flags during execution (there is no s
suffix telling the CPU to update the flags after the data movement). If you
need to set the condition code flags after a load or store operation, use the
tst instruction, supplying Rd as both operands immediately after the execu-
tion of the ldr or str instruction.

The 32-bit ARM instruction set also allows you to load or store multiple
general-purpose registers with a single instruction. The ldm instruction loads
multiple registers from memory, while the stm instruction stores multiple reg-
isters from memory. The syntax for these two instructions is as follows:

ldm{cond}ED Rb {!}, Reglist {^}
ldm{cond}IB Rb {!}, Reglist {^}
ldm{cond}FD Rb {!}, Reglist {^}
ldm{cond}IA Rb {!}, Reglist {^}
ldm{cond}EA Rb {!}, Reglist {^}
ldm{cond}DB Rb {!}, Reglist {^}
ldm{cond}FA Rb {!}, Reglist {^}
ldm{cond}DA Rb {!}, Reglist {^}

ARM Assembly for the HLL Programmer 29

stm{cond}ED Rb {!}, Reglist {^}
stm{cond}IB Rb {!}, Reglist {^}
stm{cond}FD Rb {!}, Reglist {^}
stm{cond}IA Rb {!}, Reglist {^}
stm{cond}EA Rb {!}, Reglist {^}
stm{cond}DB Rb {!}, Reglist {^}
stm{cond}FA Rb {!}, Reglist {^}
stm{cond}DA Rb {!}, Reglist {^}

As before, braces surround optional items and the italicized items have the
following meanings:

•	 cond represents one of the conditional suffixes (see “Conditional
Suffixes for Instructions” on page 24). If no suffix is present, the
default is always AL.

•	 ! means that the updated address is written back to Rd after the data
movement.

•	 ^ is really for use by operating system code and shouldn’t be present in
normal compiler-generated code. If you see this, you can ignore it.

•	 Rb is the base register. This points to memory where the registers will be
stored to or loaded from (see the following discussion).

•	 Reglist is a list of registers appearing in a pair of braces (note that the
braces are actually required here; they do not denote optional items).
The register list is a comma-separated list of registers, such as {R0, R5,
R8}. Optionally, a range of consecutive registers can be specified by a
hyphen, such as {R0, R2-R5, R8}.

The ldm and stm instructions will load or store all the registers appear-
ing in the register list. For example, ldmed R0, {R1, R2} will load registers R1
and R2 from memory. Similarly, stmed R11, {R0-R10} will write 11 registers to
memory (R0 through R10).

The ED, FD, EA, and FA suffixes are described in Table C-9. The suffixes IA
(increment after), IB (increment before), DA (decrement after), and DB (dec-
rement before) are synonyms for FD, ED, FA, and EA, respectively.

Table C-9: ARM stm and ldm Instructions

Instruction Description

ldmed Rb, {Reglist}
ldmib Rb, {Reglist}

Load multiple, preincrement addressing. Rb (base
address) register is incremented (by 4) prior to loading
each register in Reglist from memory (at the incremented
address in Rb). At the end of the operation, Rb will point
at the last register value loaded from memory.

ldmfd Rb, {Reglist}
ldmia Rb, {Reglist}

Load multiple, post-increment addressing. Rb (base
address) register is incremented (by 4) after loading each
register in Reglist from memory (at the incremented
address in Rb). At the end of the operation, Rb will point 4
bytes beyond the last register value loaded from memory.

(continued)

30 Appendix C

Table C-9: ARM stm and ldm Instructions (continued)

Instruction Description

ldmea Rb, {Reglist}
ldmdb Rb, {Reglist}

Load multiple, predecrement addressing. Rb (base address)
register is decremented (by 4) prior to loading each
register in Reglist from memory (at the decremented
address in Rb). At the end of the operation, Rb will point at
the last register value loaded from memory.

ldmfa Rb, {Reglist}
ldmda Rb, {Reglist}

Load multiple, post-decrement addressing. Rb (base
address) register is decremented (by 4) after loading
each register in Reglist to memory (at the decremented
address in Rb). At the end of the operation, Rb will point 4
bytes beyond the last register value loaded from memory.

stmed Rb, {Reglist}
stmib Rb, {Reglist}

Store multiple, preincrement addressing. Rb (base
address) register is incremented (by 4) prior to storing
each register in Reglist to memory (at the incremented
address in Rb). At the end of the operation, Rb will point
at the last register value stored into memory.

stmfd Rb, {Reglist}
stmia Rb, {Reglist}

Store multiple, post-increment addressing. Rb (base
address) register is incremented (by 4) after storing
each register in Reglist to memory (at the incremented
address in Rb). At the end of the operation, Rb will point 4
bytes beyond the last register value stored into memory.

stmea Rb, {Reglist}
stmdb Rb, {Reglist}

Store multiple, predecrement addressing. Rb (base
address) register is decremented (by 4) prior to storing
each register in Reglist to memory (at the decremented
address in Rb). At the end of the operation, Rb will point
at the last register value stored into memory.

stmfa Rb, {Reglist}
stmda Rb, {Reglist}

Store multiple, post-decrement addressing. Rb (base
address) register is decremented (by 4) after storing
each register in Reglist to memory (at the decremented
address in Rb). At the end of the operation, Rb will point 4
bytes beyond the last register value stored into memory.

One last load/store instruction of interest is the swap instruction. This
instruction actually performs both a load and store operation simultane-
ously. It has the following syntax:

swp{cond}{B} Rd, Rs, [Rb]

where:

•	 cond is the usual condition code suffix for conditional execution.

•	 B specifies a byte-sized transfer (if present; 32-bit word transfer if not
present). Note that halfword (16-bit) transfers are not possible with
this instruction.

•	 Rd is the destination register. The swp instruction copies the data origi-
nally held at memory location [Rb] into this register. For byte transfers,
the swp instruction zero-extends the byte value into the Rd register.

•	 Rs is the source register. The swp instruction stores the value held in this
register into the memory location specified by [Rb] after fetching the

ARM Assembly for the HLL Programmer 31

data from that memory location (to store into Rd). For byte transfers,
the swp instruction stores only the LO 8 bits of Rs into the memory loca-
tion pointed at by [Rb].

•	 [Rb] is the memory address (held in Rb, the base register) whose con-
tents the CPU will swap with Rd and Rs.

The swap operation is an atomic operation. The CPU will lock the bus
to guarantee that the operation completes without interruption (for con-
currency locking operations).

C.8.6  Software Interrupt Instruction
The swi (software interrupt) instruction provides a mechanism for mak-
ing a controlled operating system call. The 32-bit instruction code for swi
includes an 8-bit opcode and a 24-bit comment code (a constant). The CPU
ignores the comment code, which the OS can use as an OS call number.
This instruction has the following syntax:

swi constant

where constant is an expression that evaluates to a 24-bit (or smaller) con-
stant at compile time. The assembler will encode this constant as part of the
swi instruction code for use by the operating system.

C.8.7  ARM Floating-Point Instructions
The native ARM CPU does not provide support for floating-point arithme-
tic. Instead, coprocessors (often built onto the same die as the ARM CPU)
provide extensions to the ARM instruction set; certain sets of coprocessor
extensions include support for floating-point arithmetic. This section dis-
cusses the NEON/VFP floating-point extensions to the ARM architecture.
NEON is a specialized single-instruction/multiple-data (SIMD) extension to
the integer instruction set. While some compilers will actually emit SIMD
instructions, you’ll rarely see them in the type of code this book describes.
Therefore, this section concentrates on the ARM VFP (vector floating-
point) instructions.

Keep in mind that the A64 floating-point instruction set supports twice
as many registers as the A32 CPUs. Also, the A64 floating-point instruction
set supports additional instructions and data types. This section ignores
these extensions; see the ARMv8 (or later) reference manual for details.

C.8.7.1  The vld Instructions

The ARM architecture allows you to load a floating-point register with a
constant or from a memory location or to store a floating-point register’s
value to memory. Except for immediate constants, the syntax is similar to
the integer register ldr and str instructions. The vldr and vstr instructions
appear in Table C-10.

32 Appendix C

Table C-10: ARM vldr and vstr Instructions

Instruction Description

vld{cond}.f32 Sd, =imm
vld{cond}.f64 Dd, =imm

This is actually a pseudo-instruction. The assembler
creates an appropriate memory variable initialized with
the immediate constant in the instruction and then creates
a vldr instruction that loads the specified register from
this memory location.

vld{cond}.f32 Sd,
[Rn, #offset]
vld{cond}.f64 Dd,
[Rn, #offset]

Copies the 32-bit (.f32) or 64-bit (.f64) operand from
memory to the specified destination floating-point
register. The #offset item is optional (0 is the default
offset). If present, offset must be a multiple of 4 and in
the range -1020..+1020.

vld{cond}.f32 Sd, label
vld{cond}.f64 Dd, label

Copies the 32-bit (.f32) or 64-bit (.f64) operand from
memory to the specified destination floating-point register.
The memory location specified by label must be on a (32-
bit) word within ±1,024 bytes of the current instruction.

vstr{cond}.f32 Ss, [Rn,
#offset]
vstr{cond}.f64 Ds, [Rn,
#offset]

Stores the 32-bit (.f32) or 64-bit (.f64) source register
value into the specified destination memory location.
The #offset item is optional (0 is the default offset). If
present, offset must be a multiple of 4 and in the range
-1020..+1020.

vstr{cond}.f32 Ss, label
vstr{cond}.f64 Ds, label

Stores the 32-bit (.f32) or 64-bit (.f64) source register
value into the specified destination memory location. The
memory location specified by label must be on a (32-bit)
word within ±1,024 bytes of the current instruction.

vldmia{cond} Rb, reglist
vldmia{cond} Rb!, reglist

Rb holds the base address of a block of memory. reglist
is a list of single- or double-precision registers (you
cannot mix them in the same list) surrounded by braces.
The vldmia (increment after) instruction loads the registers
starting at Rb and incrementing the address by 4 or 8
(depending on the register size) after each transfer. If the
! suffix appears on Rb, the final address is written back
to Rb after loading the last register value from memory.
Note: vpop reglist is a synonym for vldmia sp!, reglist.

vldmdb{cond} Rb, reglist
vldmdb{cond} Rb!, reglist

Rb holds the base address of a block of memory. reglist
is a list of single- or double-precision registers (you
cannot mix them in the same list) surrounded by braces.
The vldmdb (decrement before) instruction decrements Rb
by 4 or 8 (depending on register list size) and then loads
the registers from the address starting at Rb. If the ! suffix
appears on Rb, the final address is written back to Rb
after loading the last register value from memory.

vstmia{cond} Rb, reglist
vstmia{cond} Rb!, reglist

Rb holds the base address of a block of memory. reglist
is a list of single- or double-precision registers (you
cannot mix them in the same list) surrounded by braces.
The vstmia (increment after) instruction stores the registers
starting at Rb, incrementing the address by 4 or 8 after
each transfer. If the ! suffix appears on Rb, the final
address is written back to Rb after storing the last register
value to memory.

(continued)

ARM Assembly for the HLL Programmer 33

Table C-10: ARM vld and vstr Instructions (continued)

Instruction Description

vstmdb{cond} Rb, reglist
vstmdb{cond} Rb!, reglist

Rb holds the base address of a block of memory. reglist
is a list of single- or double-precision registers (you
cannot mix them in the same list) surrounded by braces.
The vstmdb (decrement before) instruction decrements Rb
by 4 or 8 (depending on register list size) and then stores
the registers to memory starting at the address in Rb. If
the ! suffix appears on Rb, the final address is written
back to Rb after storing the last register value to memory.
Note: vpush reglist is a synonym for vstmdb sp!, reglist.

C.8.7.2  The vmov Instructions

The floating point vmov instructions take the forms shown in Table C-11.

Table C-11: ARM vmov Instructions

Instruction Description

vmov{cond}.f32 Sd, #imm
vmov{cond}.f64 Dd, #imm

Initializes a single- or double-precision floating-point
register with a floating-point constant (immediate
value). Constants are limited to any number that can be
expressed as ±n × 2 – r, where n and r are integers, 16
≤ n ≤ 31; and 0 ≤ r ≤ 7.
Sd is a single-precision floating-point register in the range
S0..S15 (A32) or S0..S31 (A64).
Dd is a double-precision floating-point register in the
range D0..D15 (A32) or D0..D31 (A64).

vmov{cond}.f32 Sd, Ss
vmov{cond}.f64 Dd, Ds

Copies the value held in one floating-point register to
another.
Sd is a destination single-precision floating-point register
in the range S0..S15 (A32) or S0..S31 (A64).
Ss is a source single-precision floating-point register in
the range S0..S15 (A32) or S0..S31 (A64).
Dd is a destination double-precision floating-point register
in the range D0..D15 (A32) or D0..D31 (A64).
Ds is a source double-precision floating-point register in
the range D0..D15 (A32) or D0..D31 (A64).

vmov{cond}.f32 Sd, Rs
vmov{cond}.f32 Rd, Ss

Copies the value held in one floating-point register and a
32-bit general-purpose register.
Sd is a destination single-precision floating-point register
in the range S0..S15 (A32) or S0..S31 (A64).
Ss is a source single-precision floating-point register in
the range S0..S15 (A32) or S0..S31 (A64).
Rd is a destination 32-bit general-purpose register in the
range D0..D15.
Rs is a source 32-bit general-purpose register in the
range D0..D15.

VMRS Rd, vreg
VMSR vreg, Rd

Copies data between a 32-bit general-purpose register
and a special system register.
Rd and Rs are 32-bit general purpose registers
(destination and source).
vreg is a special system register and is usually FPSCR,
FPSID, or FPEXC.

34 Appendix C

C.8.7.3  Floating-Point Arithmetic Instructions

The instructions appearing in Table C-12 are responsible for various float-
ing-point arithmetic operations, and Table C-13 lists the operand types for
these instructions.

Table C-12: ARM Floating-Point Arithmetic Instructions

Instruction Description

vabs{cond}.f32 Sd, Ss
vabs{cond}.f64 Dd, Ds

Computes the absolute value of the source operand and
stores the result into the destination operand.

vneg{cond}.f32 Sd, Ss
vneg{cond}.f64 Dd, Ds

Negates the sign of the source operand and stores the
result into the destination operand.

vsqrt{cond}.f32 Sd, Ss
vsqrt{cond}.f64 Dd, Ds

Computes the square root of the source operand and
stores the result into the destination operand.

vadd{cond}.f32 Sd, Sl, Sr
vadd{cond}.f64 Dd, Dl, Dr

Computes Sd = Sl + Sr
Computes Dd = Dl + Dr

vsub{cond}.f32 Sd, Sl, Sr
vsub{cond}.f64 Dd, Dl, Dr

Computes Sd = Sl – Sr
Computes Dd = Dl – Dr
Note: Unlike in integer arithmetic, there is no floating-point
reverse subtraction instruction. Simply swap the left and
right registers if you want to compute a reverse subtraction.

vdiv{cond}.f32 Sd, Sl, Sr
vdiv{cond}.f64 Dd, Dl, Dr

Computes Sd = Sl / Sr
Computes Dd = Dl / Dr

vmul{cond}.f32 Sd, Sl, Sr
vmul{cond}.f64 Dd, Dl, Dr

Computes Sd = Sl × Sr
Computes Dd = Dl × Dr

vmla{cond}.f32 Sd, Sl, Sr
vmla{cond}.f64 Dd, Dl, Dr

Computes Sd = Sd + Sl × Sr
Computes Dd = Dd + Dl × Dr

vmls{cond}.f32 Sd, Sl, Sr
vmls{cond}.f64 Dd, Dl, Dr

Computes Sd = Sd – Sl × Sr
Computes Dd = Dd – Dl × Dr

vnmul{cond}.f32 Sd, Sl, Sr
vnmul{cond}.f64 Dd, Dl, Dr

Computes Sd = –(Sl × Sr)
Computes Dd = –(Dl × Dr)

vnmla{cond}.f32 Sd, Sl, Sr
vnmla{cond}.f64 Dd, Dl, Dr

Computes Sd = –(Sd + Sl × Sr)
Computes Dd = –(Dd + Dl × Dr)

vnmls{cond}.f32 Sd, Sl, Sr
vnmls{cond}.f64 Dd, Dl, Dr

Computes Sd = –(Sd – Sl × Sr)
Computes Dd = –(Dd – Dl × Dr)

Table C-13: ARM Floating-Point Instruction Operand Formats

Instruction Description

Ss, Sl, Sr Represents a single-precision floating point register
holding the source operand (l and r stand for left and
right source operands, respectively).

Sd Represents a single-precision floating point register
holding the destination operand.

Ds, Dl, Dr Represents a double-precision floating point register
holding the source operand (l and r stand for left and
right source operands, respectively).

Dd Represents a double-precision floating point register
holding the destination operand.

ARM Assembly for the HLL Programmer 35

C.9  For More Information
The list of ARM instructions described in this appendix is by no means
comprehensive. If you’re interested in additional details about the instruc-
tion set, consult ARM Inc.’s ARMv7 instruction set (Cortex A17) or ARMv8
instruction set (for example, Cortex A76) at https://www.arm.com. Better yet,
follow the links at https://en.wikipedia.org/wiki/ARM_architecture.

https://www.arm.com
https://en.wikipedia.org/wiki/ARM_architecture

	Appendix C: ARM Assembly for the HLL Programmer
	C.1 Assembly Syntaxes
	C.2 Basic ARM Architecture
	C.2.1 32- and 64-Bit Variants
	C.2.2 General-Purpose Integer Registers
	C.2.2.1 ARMv7 (A32) Registers
	C.2.2.2 ARMv8 (A64) Registers

	C.2.3 Floating-Point and SIMD Registers
	C.2.3.1 A32 Floating-Point Registers
	C.2.3.2 A64 Floating-Point Registers
	C.2.3.3 Condition Code Bits
	C.2.3.4 The Link Register

	C.3 Literal Constants
	C.3.1 Binary Literal Constants
	C.3.2 Decimal Literal Constants
	C.3.3 Hexadecimal Literal Constants
	C.3.4 Character and String Literal Constants
	C.3.5 Floating-Point Literal Constants

	C.4 Manifest (Symbolic) Constants in Assembly Language
	C.5 ARM Addressing Modes
	C.5.1 ARM Register Access
	C.5.2 The Immediate Addressing Mode
	C.5.3 ARM Memory Addressing Modes
	C.5.3.1 Register Plus Displacement Addressing Mode
	C.5.3.2 Preindexed Addressing with Write-Back
	C.5.3.3 Post-Indexed Addressing with Write-Back
	C.5.3.4 Scaled-Index Addressing Mode

	C.6 Declaring Data in Assembly Language
	C.7 Specifying Operand Sizes in Assembly Language
	C.8 The Minimal Instruction Set
	C.8.1 Data Manipulation Instructions
	C.8.2 Conditional Suffixes for Instructions
	C.8.3 Multiply Instructions
	C.8.4 Branch Instructions
	C.8.5 Load and Store Instructions
	C.8.6 Software Interrupt Instruction
	C.8.7 ARM Floating-Point Instructions
	C.8.7.1 The vld Instructions
	C.8.7.2 The vmov Instructions
	C.8.7.3 Floating-Point Arithmetic Instructions

	C.9 For More Information

